Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Plant J ; 118(5): 1699-1712, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38509728

RESUMO

Capturing images of the nuclear dynamics within live cells is an essential technique for comprehending the intricate biological processes inherent to plant cell nuclei. While various methods exist for imaging nuclei, including combining fluorescent proteins and dyes with microscopy, there is a dearth of commercially available dyes for live-cell imaging. In Arabidopsis thaliana, we discovered that nuclei emit autofluorescence in the near-infrared (NIR) range of the spectrum and devised a non-invasive technique for the visualization of live cell nuclei using this inherent NIR autofluorescence. Our studies demonstrated the capability of the NIR imaging technique to visualize the dynamic behavior of nuclei within primary roots, root hairs, and pollen tubes, which are tissues that harbor a limited number of other organelles displaying autofluorescence. We further demonstrated the applicability of NIR autofluorescence imaging in various other tissues by incorporating fluorescence lifetime imaging techniques. Nuclear autofluorescence was also detected across a wide range of plant species, enabling analyses without the need for transformation. The nuclear autofluorescence in the NIR wavelength range was not observed in animal or yeast cells. Genetic analysis revealed that this autofluorescence was caused by the phytochrome protein. Our studies demonstrated that nuclear autofluorescence imaging can be effectively employed not only in model plants but also for studying nuclei in non-model plant species.


Assuntos
Arabidopsis , Núcleo Celular , Imagem Óptica , Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Imagem Óptica/métodos , Fitocromo/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/citologia , Fluorescência
2.
Plant Cell ; 34(1): 72-102, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34529074

RESUMO

As scientists, we are at least as excited about the open questions-the things we do not know-as the discoveries. Here, we asked 15 experts to describe the most compelling open questions in plant cell biology. These are their questions: How are organelle identity, domains, and boundaries maintained under the continuous flux of vesicle trafficking and membrane remodeling? Is the plant cortical microtubule cytoskeleton a mechanosensory apparatus? How are the cellular pathways of cell wall synthesis, assembly, modification, and integrity sensing linked in plants? Why do plasmodesmata open and close? Is there retrograde signaling from vacuoles to the nucleus? How do root cells accommodate fungal endosymbionts? What is the role of cell edges in plant morphogenesis? How is the cell division site determined? What are the emergent effects of polyploidy on the biology of the cell, and how are any such "rules" conditioned by cell type? Can mechanical forces trigger new cell fates in plants? How does a single differentiated somatic cell reprogram and gain pluripotency? How does polarity develop de-novo in isolated plant cells? What is the spectrum of cellular functions for membraneless organelles and intrinsically disordered proteins? How do plants deal with internal noise? How does order emerge in cells and propagate to organs and organisms from complex dynamical processes? We hope you find the discussions of these questions thought provoking and inspiring.


Assuntos
Células Vegetais/fisiologia , Fenômenos Fisiológicos Vegetais , Biologia Celular , Desenvolvimento Vegetal
3.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34290139

RESUMO

Cellulose is synthesized at the plasma membrane by cellulose synthase (CESA) complexes (CSCs), which are assembled in the Golgi and secreted to the plasma membrane through the trans-Golgi network (TGN) compartment. However, the molecular mechanisms that guide CSCs through the secretory system and deliver them to the plasma membrane are poorly understood. Here, we identified an uncharacterized gene, TRANVIA (TVA), that is transcriptionally coregulated with the CESA genes required for primary cell wall synthesis. The tva mutant exhibits enhanced sensitivity to cellulose synthesis inhibitors; reduced cellulose content; and defective dynamics, density, and secretion of CSCs to the plasma membrane as compared to wild type. TVA is a plant-specific protein of unknown function that is detected in at least two different intracellular compartments: organelles labeled by markers for the TGN and smaller compartments that deliver CSCs to the plasma membrane. Together, our data suggest that TVA promotes trafficking of CSCs to the plasma membrane by facilitating exit from the TGN and/or interaction of CSC secretory vesicles with the plasma membrane.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Celulose/metabolismo , Glucosiltransferases/metabolismo , Complexo de Golgi/metabolismo , Rede trans-Golgi/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Citocinese , Glucosiltransferases/genética , Microtúbulos , Transporte Proteico
4.
Plant Cell ; 26(6): 2617-2632, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24972597

RESUMO

The preprophase band (PPB) is a faithful but transient predictor of the division plane in somatic cell divisions. Throughout mitosis the PPBs positional information is preserved by factors that continuously mark the division plane at the cell cortex, the cortical division zone, by their distinct spatio-temporal localization patterns. However, the mechanism maintaining these identity factors at the plasma membrane after PPB disassembly remains obscure. The pair of kinesin-12 class proteins PHRAGMOPLAST ORIENTING KINESIN1 (POK1) and POK2 are key players in division plane maintenance. Here, we show that POK1 is continuously present at the cell cortex, providing a spatial reference for the site formerly occupied by the PPB. Fluorescence recovery after photobleaching analysis combined with microtubule destabilization revealed dynamic microtubule-dependent recruitment of POK1 to the PPB during prophase, while POK1 retention at the cortical division zone in the absence of cortical microtubules appeared static. POK function is strictly required to maintain the division plane identity factor TANGLED (TAN) after PPB disassembly, although POK1 and TAN recruitment to the PPB occur independently during prophase. Together, our data suggest that POKs represent fundamental early anchoring components of the cortical division zone, translating and preserving the positional information of the PPB by maintaining downstream identity markers.

5.
Plant Cell ; 26(11): 4409-25, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25415978

RESUMO

The microtubule plus-end tracking proteins (+TIPs) END BINDING1b (EB1b) and SPIRAL1 (SPR1) are required for normal cell expansion and organ growth. EB proteins are viewed as central regulators of +TIPs and cell polarity in animals; SPR1 homologs are specific to plants. To explore if EB1b and SPR1 fundamentally function together, we combined genetic, biochemical, and cell imaging approaches in Arabidopsis thaliana. We found that eb1b-2 spr1-6 double mutant roots exhibit substantially more severe polar expansion defects than either single mutant, undergoing right-looping growth and severe axial twisting instead of waving on tilted hard-agar surfaces. Protein interaction assays revealed that EB1b and SPR1 bind each other and tubulin heterodimers, which is suggestive of a microtubule loading mechanism. EB1b and SPR1 show antagonistic association with microtubules in vitro. Surprisingly, our combined analyses revealed that SPR1 can load onto microtubules and function independently of EB1 proteins, setting SPR1 apart from most studied +TIPs in animals and fungi. Moreover, we found that the severity of defects in microtubule dynamics in spr1 eb1b mutant hypocotyl cells correlated well with the severity of growth defects. These data indicate that SPR1 and EB1b have complex interactions as they load onto microtubule plus ends and direct polar cell expansion and organ growth in response to directional cues.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Sequência de Aminoácidos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Crescimento Celular , Polaridade Celular , Genes Reporter , Hipocótilo/genética , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Dados de Sequência Molecular , Mutagênese Insercional , Fenótipo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Tubulina (Proteína)/metabolismo , Técnicas do Sistema de Duplo-Híbrido
6.
Plant Cell ; 24(2): 374-94, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22366161

RESUMO

Plants are one of the most fascinating and important groups of organisms living on Earth. They serve as the conduit of energy into the biosphere, provide food, and shape our environment. If we want to make headway in understanding how these essential organisms function and build the foundation for a more sustainable future, then we need to apply the most advanced technologies available to the study of plant life. In 2009, a committee of the National Academy highlighted the "understanding of plant growth" as one of the big challenges for society and part of a new era which they termed "new biology." The aim of this article is to identify how new technologies can and will transform plant science to address the challenges of new biology. We assess where we stand today regarding current technologies, with an emphasis on molecular and imaging technologies, and we try to address questions about where we may go in the future and whether we can get an idea of what is at and beyond the horizon.


Assuntos
Biologia Computacional , Imageamento Tridimensional/métodos , Plantas , Ciência/tendências , Análise de Sequência de DNA/métodos , Biologia Celular/tendências , Genômica/métodos , Espectrometria de Massas , Microscopia/métodos , Desenvolvimento Vegetal , Plantas/genética
7.
Plant Cell ; 24(3): 1158-70, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22395485

RESUMO

Organization of microtubules into ordered arrays involves spatial and temporal regulation of microtubule nucleation. Here, we show that acentrosomal microtubule nucleation in plant cells involves a previously unknown regulatory step that determines the geometry of microtubule nucleation. Dynamic imaging of interphase cortical microtubules revealed that the ratio of branching to in-bundle microtubule nucleation on cortical microtubules is regulated by the Arabidopsis thaliana B'' subunit of protein phosphatase 2A, which is encoded by the TONNEAU2/FASS (TON2) gene. The probability of nucleation from γ-tubulin complexes localized at the cell cortex was not affected by a loss of TON2 function, suggesting a specific role of TON2 in regulating the nucleation geometry. Both loss of TON2 function and ectopic targeting of TON2 to the plasma membrane resulted in defects in cell shape, suggesting the importance of TON2-mediated regulation of the microtubule cytoskeleton in cell morphogenesis. Loss of TON2 function also resulted in an inability for cortical arrays to reorient in response to light stimulus, suggesting an essential role for TON2 and microtubule branching nucleation in reorganization of microtubule arrays. Our data establish TON2 as a regulator of interphase microtubule nucleation and provide experimental evidence for a novel regulatory step in the process of microtubule-dependent nucleation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Interfase , Microtúbulos/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Clonagem Molecular , Fosfoproteínas Fosfatases/genética , Transdução de Sinais , Tubulina (Proteína)/metabolismo
8.
Plant Cell ; 24(10): 4012-25, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23115248

RESUMO

The brassinosteroid (BR) phytohormones play crucial roles in regulating plant cell growth and morphogenesis, particularly in hypocotyl cell elongation. The microtubule cytoskeleton is also known to participate in the regulation of hypocotyl elongation. However, it is unclear if BR regulation of hypocotyl elongation involves the microtubule cytoskeleton. In this study, we demonstrate that BRs mediate hypocotyl cell elongation by influencing the orientation and stability of cortical microtubules. Further analysis identified the previously undiscovered Arabidopsis thaliana microtubule destabilizing protein40 (MDP40) as a positive regulator of hypocotyl cell elongation. Brassinazole-resistant1, a key transcription factor in the BR signaling pathway, directly targets and upregulates MDP40. Overexpression of MDP40 partially rescued the shorter hypocotyl phenotype in BR-deficient mutant de-etiolated-2 seedlings. Reorientation of the cortical microtubules in the cells of MDP40 RNA interference transgenic lines was less sensitive to BR. These findings demonstrate that MDP40 is a key regulator in BR regulation of cortical microtubule reorientation and mediates hypocotyl growth. This study reveals a mechanism involving BR regulation of microtubules through MDP40 to mediate hypocotyl cell elongation.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Hipocótilo/crescimento & desenvolvimento , Proteínas Associadas aos Microtúbulos/fisiologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA , Hipocótilo/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/fisiologia , Fenótipo , Regulação para Cima
9.
Curr Opin Cell Biol ; 20(1): 107-16, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18243678

RESUMO

Live cell imaging and genetic studies are demonstrating that cortical microtubule arrays in plant cells are dynamic structures in which microtubule (MT) bundles play a key role in creating array organization and function. Steps important for creating and organizing these arrays include recruitment of nucleation complexes to the cell cortex and to the lattices of previously established MTs, association of newly created MTs to the cell cortex, release of MTs from sites of nucleation, transport of released MTs by polymer treadmilling, and subsequent interactions between treadmilling MTs. The results of MT interactions include induced catastrophe, severing, and the capture and reorientation of growing polymer ends by bundling interactions. Together, these properties predict a capacity for self-ordering that is likely to play an important role in establishing the parallel organization of the arrays.


Assuntos
Microtúbulos/metabolismo , Células Vegetais , Plantas/metabolismo , Centrossomo/metabolismo
10.
Proc Natl Acad Sci U S A ; 109(11): 4098-103, 2012 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-22375033

RESUMO

The mechanisms underlying the biosynthesis of cellulose in plants are complex and still poorly understood. A central question concerns the mechanism of microfibril structure and how this is linked to the catalytic polymerization action of cellulose synthase (CESA). Furthermore, it remains unclear whether modification of cellulose microfibril structure can be achieved genetically, which could be transformative in a bio-based economy. To explore these processes in planta, we developed a chemical genetic toolbox of pharmacological inhibitors and corresponding resistance-conferring point mutations in the C-terminal transmembrane domain region of CESA1(A903V) and CESA3(T942I) in Arabidopsis thaliana. Using (13)C solid-state nuclear magnetic resonance spectroscopy and X-ray diffraction, we show that the cellulose microfibrils displayed reduced width and an additional cellulose C4 peak indicative of a degree of crystallinity that is intermediate between the surface and interior glucans of wild type, suggesting a difference in glucan chain association during microfibril formation. Consistent with measurements of lower microfibril crystallinity, cellulose extracts from mutated CESA1(A903V) and CESA3(T942I) displayed greater saccharification efficiency than wild type. Using live-cell imaging to track fluorescently labeled CESA, we found that these mutants show increased CESA velocities in the plasma membrane, an indication of increased polymerization rate. Collectively, these data suggest that CESA1(A903V) and CESA3(T942I) have modified microfibril structure in terms of crystallinity and suggest that in plants, as in bacteria, crystallization biophysically limits polymerization.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Celulose/química , Glucosiltransferases/química , Glucosiltransferases/genética , Microfibrilas/química , Mutação/genética , Alelos , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Arabidopsis/efeitos dos fármacos , Arabidopsis/enzimologia , Proteínas de Arabidopsis/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/enzimologia , Celulose/biossíntese , Cristalização , Resistência a Medicamentos/efeitos dos fármacos , Genes Dominantes/genética , Glucosiltransferases/metabolismo , Espectroscopia de Ressonância Magnética , Microfibrilas/efeitos dos fármacos , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Transporte Proteico/efeitos dos fármacos , Quinolinas/química , Quinolinas/farmacologia , Relação Estrutura-Atividade
11.
Plant Physiol ; 162(2): 675-88, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23606596

RESUMO

The actin and microtubule cytoskeletons regulate cell shape across phyla, from bacteria to metazoans. In organisms with cell walls, the wall acts as a primary constraint of shape, and generation of specific cell shape depends on cytoskeletal organization for wall deposition and/or cell expansion. In higher plants, cortical microtubules help to organize cell wall construction by positioning the delivery of cellulose synthase (CesA) complexes and guiding their trajectories to orient newly synthesized cellulose microfibrils. The actin cytoskeleton is required for normal distribution of CesAs to the plasma membrane, but more specific roles for actin in cell wall assembly and organization remain largely elusive. We show that the actin cytoskeleton functions to regulate the CesA delivery rate to, and lifetime of CesAs at, the plasma membrane, which affects cellulose production. Furthermore, quantitative image analyses revealed that actin organization affects CesA tracking behavior at the plasma membrane and that small CesA compartments were associated with the actin cytoskeleton. By contrast, localized insertion of CesAs adjacent to cortical microtubules was not affected by the actin organization. Hence, both actin and microtubule cytoskeletons play important roles in regulating CesA trafficking, cellulose deposition, and organization of cell wall biogenesis.


Assuntos
Actinas/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Glucosiltransferases/metabolismo , Interfase , Citoesqueleto de Actina/metabolismo , Actinas/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Parede Celular/metabolismo , Celulose/metabolismo , Citoesqueleto/metabolismo , Exocitose , Glucosiltransferases/genética , Complexo de Golgi , Hipocótilo/citologia , Hipocótilo/metabolismo , Microtúbulos/metabolismo , Dados de Sequência Molecular , Mutação
12.
Plant Physiol ; 161(3): 1189-201, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23300168

RESUMO

The ordered arrangement of cortical microtubules in growing plant cells is essential for anisotropic cell expansion and, hence, for plant morphogenesis. These arrays are dismantled when the microtubule cytoskeleton is rearranged during mitosis and reassembled following completion of cytokinesis. The reassembly of the cortical array has often been considered as initiating from a state of randomness, from which order arises at least partly through self-organizing mechanisms. However, some studies have shown evidence for ordering at early stages of array assembly. To investigate how cortical arrays are initiated in higher plant cells, we performed live-cell imaging studies of cortical array assembly in tobacco (Nicotiana tabacum) Bright Yellow-2 cells after cytokinesis and drug-induced disassembly. We found that cortical arrays in both cases did not initiate randomly but with a significant overrepresentation of microtubules at diagonal angles with respect to the cell axis, which coincides with the predominant orientation of the microtubules before their disappearance from the cell cortex in preprophase. In Arabidopsis (Arabidopsis thaliana) root cells, recovery from drug-induced disassembly was also nonrandom and correlated with the organization of the previous array, although no diagonal bias was observed in these cells. Surprisingly, during initiation, only about one-half of the new microtubules were nucleated from locations marked by green fluorescent protein-γ-tubulin complex protein2-tagged γ-nucleation complexes (γ-tubulin ring complex), therefore indicating that a large proportion of early polymers was initiated by a noncanonical mechanism not involving γ-tubulin ring complex. Simulation studies indicate that the high rate of noncanonical initiation of new microtubules has the potential to accelerate the rate of array repopulation.


Assuntos
Arabidopsis/metabolismo , Microtúbulos/metabolismo , Nicotiana/metabolismo , Arabidopsis/citologia , Arabidopsis/efeitos dos fármacos , Linhagem Celular , Simulação por Computador , Citocinese/efeitos dos fármacos , Dinitrobenzenos/farmacologia , Proteínas de Fluorescência Verde/metabolismo , Microtúbulos/efeitos dos fármacos , Epiderme Vegetal/citologia , Epiderme Vegetal/efeitos dos fármacos , Raízes de Plantas/citologia , Raízes de Plantas/efeitos dos fármacos , Sulfanilamidas/farmacologia , Nicotiana/citologia , Nicotiana/efeitos dos fármacos , Tubulina (Proteína)/metabolismo
13.
Plant Cell ; 23(6): 2302-13, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21693695

RESUMO

In eukaryotic cells, the actin and microtubule (MT) cytoskeletal networks are dynamic structures that organize intracellular processes and facilitate their rapid reorganization. In plant cells, actin filaments (AFs) and MTs are essential for cell growth and morphogenesis. However, dynamic interactions between these two essential components in live cells have not been explored. Here, we use spinning-disc confocal microscopy to dissect interaction and cooperation between cortical AFs and MTs in Arabidopsis thaliana, utilizing fluorescent reporter constructs for both components. Quantitative analyses revealed altered AF dynamics associated with the positions and orientations of cortical MTs. Reorganization and reassembly of the AF array was dependent on the MTs following drug-induced depolymerization, whereby short AFs initially appeared colocalized with MTs, and displayed motility along MTs. We also observed that light-induced reorganization of MTs occurred in concert with changes in AF behavior. Our results indicate dynamic interaction between the cortical actin and MT cytoskeletons in interphase plant cells.


Assuntos
Citoesqueleto de Actina/metabolismo , Arabidopsis/citologia , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Microtúbulos/metabolismo , Citoesqueleto de Actina/ultraestrutura , Animais , Antineoplásicos/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Citoesqueleto/efeitos dos fármacos , Depsipeptídeos/farmacologia , Microtúbulos/ultraestrutura , Células Vegetais/efeitos dos fármacos , Células Vegetais/metabolismo , Células Vegetais/ultraestrutura , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/ultraestrutura , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/ultraestrutura , Tiazolidinas/farmacologia
14.
Plant Cell ; 23(7): 2774-87, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21742993

RESUMO

To form nitrogen-fixing symbioses, legume plants recognize a bacterial signal, Nod Factor (NF). The legume Medicago truncatula has two predicted NF receptors that direct separate downstream responses to its symbiont Sinorhizobium meliloti. NOD FACTOR PERCEPTION encodes a putative low-stringency receptor that is responsible for calcium spiking and transcriptional responses. LYSIN MOTIF RECEPTOR-LIKE KINASE3 (LYK3) encodes a putative high-stringency receptor that mediates bacterial infection. We localized green fluorescent protein (GFP)-tagged LYK3 in M. truncatula and found that it has a punctate distribution at the cell periphery consistent with a plasma membrane or membrane-tethered vesicle localization. In buffer-treated control roots, LYK3:GFP puncta are dynamic. After inoculation with compatible S. meliloti, LYK3:GFP puncta are relatively stable. We show that increased LYK3:GFP stability depends on bacterial NF and NF structure but that NF is not sufficient for the change in LYK3:GFP dynamics. In uninoculated root hairs, LYK3:GFP has little codistribution with mCherry-tagged FLOTILLIN4 (FLOT4), another punctate plasma membrane-associated protein required for infection. In inoculated root hairs, we observed an increase in FLOT4:mCherry and LYK3:GFP colocalization; both proteins localize to positionally stable puncta. We also demonstrate that the localization of tagged FLOT4 is altered in plants carrying a mutation that inactivates the kinase domain of LYK3. Our work indicates that LYK3 protein localization and dynamics are altered in response to symbiotic bacteria.


Assuntos
Medicago truncatula/enzimologia , Medicago truncatula/microbiologia , Proteínas de Plantas/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Sinorhizobium meliloti/fisiologia , Simbiose/fisiologia , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Lipopolissacarídeos , Medicago truncatula/citologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Fixação de Nitrogênio/fisiologia , Proteínas de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/ultraestrutura , Plantas Geneticamente Modificadas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores Proteína Tirosina Quinases/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Sinorhizobium meliloti/patogenicidade
15.
Plant Cell ; 23(12): 4234-40, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22186371

RESUMO

Studying development and physiology of growing roots is challenging due to limitations regarding cellular and subcellular analysis under controlled environmental conditions. We describe a microfluidic chip platform, called RootChip, that integrates live-cell imaging of growth and metabolism of Arabidopsis thaliana roots with rapid modulation of environmental conditions. The RootChip has separate chambers for individual regulation of the microenvironment of multiple roots from multiple seedlings in parallel. We demonstrate the utility of The RootChip by monitoring time-resolved growth and cytosolic sugar levels at subcellular resolution in plants by a genetically encoded fluorescence sensor for glucose and galactose. The RootChip can be modified for use with roots from other plant species by adapting the chamber geometry and facilitates the systematic analysis of root growth and metabolism from multiple seedlings, paving the way for large-scale phenotyping of root metabolism and signaling.


Assuntos
Arabidopsis/fisiologia , Microfluídica/instrumentação , Raízes de Plantas/crescimento & desenvolvimento , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Metabolismo dos Carboidratos , Microambiente Celular , Meios de Cultura/metabolismo , Citosol/metabolismo , Dimetilpolisiloxanos/metabolismo , Fluorescência , Galactose/metabolismo , Glucose/metabolismo , Processamento de Imagem Assistida por Computador , Microfluídica/métodos , Fotoperíodo , Células Vegetais/metabolismo , Células Vegetais/fisiologia , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Transdução de Sinais , Fatores de Tempo , Imagem com Lapso de Tempo/métodos
16.
J Cell Biol ; 223(5)2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38558238

RESUMO

Plants often adapt to adverse or stress conditions via differential growth. The trans-Golgi network (TGN) has been implicated in stress responses, but it is not clear in what capacity it mediates adaptive growth decisions. In this study, we assess the role of the TGN in stress responses by exploring the previously identified interactome of the Transport Protein Particle II (TRAPPII) complex required for TGN structure and function. We identified physical and genetic interactions between AtTRAPPII and shaggy-like kinases (GSK3/AtSKs) and provided in vitro and in vivo evidence that the TRAPPII phosphostatus mediates adaptive responses to abiotic cues. AtSKs are multifunctional kinases that integrate a broad range of signals. Similarly, the AtTRAPPII interactome is vast and considerably enriched in signaling components. An AtSK-TRAPPII interaction would integrate all levels of cellular organization and instruct the TGN, a central and highly discriminate cellular hub, as to how to mobilize and allocate resources to optimize growth and survival under limiting or adverse conditions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Transporte , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Fosforilação , Transporte Proteico , Rede trans-Golgi/metabolismo , Proteínas de Transporte/metabolismo
17.
Plant J ; 71(2): 216-25, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22404201

RESUMO

Microtubules in eukaryotic cells are nucleated from ring-shaped complexes that contain γ-tubulin and a family of homologous γ-tubulin complex proteins (GCPs), but the subunit composition of the complexes can vary among fungi, animals and plants. Arabidopsis GCP3-interacting protein 1 (GIP1), a small protein with no homology to the GCP family, interacts with GCP3 in vitro, and is a plant homolog of vertebrate mitotic-spindle organizing protein associated with a ring of γ-tubulin 1 (MOZART1), a recently identified component of the γ-tubulin complex in human cell lines. In this study, we characterized two closely related Arabidopsis GIP1s: GIP1a and GIP1b. Single mutants of gip1a and gip1b were indistinguishable from wild-type plants, but their double mutant was embryonic lethal, and showed impaired development of male gametophytes. Functional fusions of GIP1a with green fluorescent protein (GFP) were used to purify GIP1a-containing complexes from Arabidopsis plants, which contained all the subunits (except NEDD1) previously identified in the Arabidopsis γ-tubulin complexes. GIP1a and GIP1b interacted specifically with Arabidopsis GCP3 in yeast. GFP-GIP1a labeled mitotic microtubule arrays in a pattern largely consistent with, but partly distinct from, the localization of the γ-tubulin complex containing GCP2 or GCP3 in planta. In interphase cortical arrays, the labeled complexes were preferentially recruited to existing microtubules, from which new microtubules were efficiently nucleated. However, in contrast to complexes labeled with tagged GCP2 or GCP3, their recruitment to cortical areas with no microtubules was rarely observed. These results indicate that GIP1/MOZART1 is an integral component of a subset of the Arabidopsis γ-tubulin complexes.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Arabidopsis/citologia , Arabidopsis/embriologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/isolamento & purificação , Proteínas de Transporte/genética , Proteínas de Transporte/isolamento & purificação , Expressão Gênica/genética , Proteínas de Fluorescência Verde/metabolismo , Interfase , Espectrometria de Massas , Microscopia Confocal , Proteínas Associadas aos Microtúbulos/genética , Mutação , Regiões Promotoras Genéticas/genética , Mapeamento de Interação de Proteínas , RNA de Plantas/genética , Proteínas Recombinantes de Fusão , Técnicas do Sistema de Duplo-Híbrido
18.
Mol Plant Microbe Interact ; 26(2): 216-26, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23013436

RESUMO

The Medicago truncatula DMI2 gene encodes a leucine-rich repeat receptor-like kinase that is essential for symbiosis with nitrogen-fixing rhizobia. While phenotypic analyses have provided a description for the host's responses mediated by DMI2, a lack of tools for in vivo biochemical analysis has hampered efforts to elucidate the mechanisms by which DMI2 mediates symbiotic signal transduction. Here, we report stably transformed M. truncatula lines that express a genomic DMI2 construct that is fused to a dual-affinity tag containing three copies of the hemagglutinin epitope and a single StrepII tag (gDMI2:HAST). gDMI2: HAST complements the dmi2-1 mutation, and transgenic plants expressing this construct behave similarly to wild-type plants. We show that the expression patterns of gDMI2:HAST recapitulate those of endogenous DMI2 and that we can detect and purify DMI2:HAST from microsomal root and nodule extracts. Using this line, we show that DMI2 resides in a high-molecular weight complex, which is consistent with our observation that DMI2:GFP localizes to plasma membrane-associated puncta and cytoplasmic vesicles. We further demonstrate that Nod factor (NF) perception increases the abundance of DMI2 vesicles. These tools should be a valuable resource for the Medicago community to dissect the biochemical function of DMI2.


Assuntos
Medicago truncatula/genética , Fosfotransferases/metabolismo , Plantas Geneticamente Modificadas , Sinorhizobium meliloti/fisiologia , Sequência de Aminoácidos , Biomassa , Regulação da Expressão Gênica de Plantas , Medicago truncatula/citologia , Medicago truncatula/crescimento & desenvolvimento , Medicago truncatula/fisiologia , Dados de Sequência Molecular , Mutação , Fixação de Nitrogênio , Fenótipo , Fosfotransferases/genética , Fosfotransferases/isolamento & purificação , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/fisiologia , Brotos de Planta/citologia , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/fisiologia , Proteínas Recombinantes de Fusão , Nódulos Radiculares de Plantas/citologia , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/fisiologia , Transdução de Sinais , Simbiose
19.
Proc Natl Acad Sci U S A ; 107(40): 17188-93, 2010 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-20855602

RESUMO

The CESA1 component of cellulose synthase is phosphorylated at sites clustered in two hypervariable regions of the protein. Mutations of the phosphorylated residues to Ala (A) or Glu (E) alter anisotropic cell expansion and cellulose synthesis in rapidly expanding roots and hypocotyls. Expression of T166E, S686E, or S688E mutants of CESA1 fully rescued the temperature sensitive cesA1-1 allele (rsw1) at a restrictive temperature whereas mutations to A at these positions caused defects in anisotropic cell expansion. However, mutations to E at residues surrounding T166 (i.e., S162, T165, and S167) caused opposite effects. Live-cell imaging of fluorescently labeled CESA showed close correlations between tissue or cell morphology and patterns of bidirectional motility of CESA complexes in the plasma membrane. In the WT, CESA complexes moved at similar velocities in both directions along microtubule tracks. By contrast, the rate of movement of CESA particles was directionally asymmetric in mutant lines that exhibited abnormal tissue or cell expansion, and the asymmetry was removed upon depolymerizing microtubules with oryzalin. This suggests that phosphorylation of CESA differentially affects a polar interaction with microtubules that may regulate the length or quantity of a subset of cellulose microfibrils and that this, in turn, alters microfibril structure in the primary cell wall resulting in or contributing to the observed defect in anisotropic cell expansion.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/enzimologia , Glucosiltransferases/metabolismo , Mutação , Anisotropia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proliferação de Células , Parede Celular/metabolismo , Celulose/biossíntese , Celulose/ultraestrutura , Dinitrobenzenos , Glucosiltransferases/genética , Microfibrilas/química , Microfibrilas/metabolismo , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Mutagênese Sítio-Dirigida , Fosforilação , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Sulfanilamidas , Moduladores de Tubulina/metabolismo
20.
BMC Biol ; 10: 39, 2012 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-22554191

RESUMO

Bioluminescent and fluorescent proteins are now used as tools for research in all organisms. There has been massive progress over the past 15 years in creating a palette of fluorescent proteins with a wide spectrum of specific properties. One of the big challenges is to decide which variant may be best for a certain application. A recent article by Mann et al. in BMC Biotechnology describes a new orange fluorescent protein in plants.


Assuntos
Biotecnologia/métodos , Botânica/métodos , Proteínas Luminescentes/química , Fluorescência , Fenômenos Fisiológicos Vegetais , Espectrometria de Fluorescência/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA