Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34301910

RESUMO

Cyclic nucleotide-gated (CNG) ion channels of olfactory neurons are tetrameric membrane receptors that are composed of two A2 subunits, one A4 subunit, and one B1b subunit. Each subunit carries a cyclic nucleotide-binding domain in the carboxyl terminus, and the channels are activated by the binding of cyclic nucleotides. The mechanism of cooperative channel activation is still elusive. Using a complete set of engineered concatenated olfactory CNG channels, with all combinations of disabled binding sites and fit analyses with systems of allosteric models, the thermodynamics of microscopic cooperativity for ligand binding was subunit- and state-specifically quantified. We show, for the closed channel, that preoccupation of each of the single subunits increases the affinity of each other subunit with a Gibbs free energy (ΔΔG) of ∼-3.5 to ∼-5.5 kJ ⋅ mol-1, depending on the subunit type, with the only exception that a preoccupied opposite A2 subunit has no effect on the other A2 subunit. Preoccupation of two neighbor subunits of a given subunit causes the maximum affinity increase with ΔΔG of ∼-9.6 to ∼-9.9 kJ ⋅ mol-1 Surprisingly, triple preoccupation leads to fewer negative ΔΔG values for a given subunit as compared to double preoccupation. Channel opening increases the affinity of all subunits. The equilibrium constants of closed-open isomerizations systematically increase with progressive liganding. This work demonstrates, on the example of the heterotetrameric olfactory CNG channel, a strategy to derive detailed insights into the specific mutual control of the individual subunits in a multisubunit membrane receptor.


Assuntos
AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/química , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Ativação do Canal Iônico , Termodinâmica , Animais , Sítios de Ligação , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Ligantes , Oócitos/metabolismo , Conformação Proteica , Subunidades Proteicas , Xenopus laevis/crescimento & desenvolvimento , Xenopus laevis/metabolismo
2.
PLoS Comput Biol ; 18(8): e1010376, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35998156

RESUMO

Cyclic nucleotide-gated (CNG) ion channels of olfactory sensory neurons contain three types of homologue subunits, two CNGA2 subunits, one CNGA4 subunit and one CNGB1b subunit. Each subunit carries an intracellular cyclic nucleotide binding domain (CNBD) whose occupation by up to four cyclic nucleotides evokes channel activation. Thereby, the subunits interact in a cooperative fashion. Here we studied 16 concatamers with systematically disabled, but still functional, binding sites and quantified channel activation by systems of intimately coupled state models transferred to 4D hypercubes, thereby exploiting a weak voltage dependence of the channels. We provide the complete landscape of free energies for the complex activation process of heterotetrameric channels, including 32 binding steps, in both the closed and open channel, as well as 16 closed-open isomerizations. The binding steps are specific for the subunits and show pronounced positive cooperativity for the binding of the second and the third ligand. The energetics of the closed-open isomerizations were disassembled to elementary subunit promotion energies for channel opening, [Formula: see text], adding to the free energy of the closed-open isomerization of the empty channel, E0. The [Formula: see text] values are specific for the four subunits and presumably invariant for the specific patterns of liganding. In conclusion, subunit cooperativity is confined to the CNBD whereas the subunit promotion energies for channel opening are independent.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos , Neurônios Receptores Olfatórios , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Ligantes , Nucleotídeos Cíclicos/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Olfato
3.
PLoS Comput Biol ; 14(3): e1006045, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29565972

RESUMO

Hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels control electrical rhythmicity in specialized brain and heart cells. We quantitatively analysed voltage-dependent activation of homotetrameric HCN2 channels and its modulation by the second messenger cAMP using global fits of hidden Markovian models to complex experimental data. We show that voltage-dependent activation is essentially governed by two separable voltage-dependent steps followed by voltage-independent opening of the pore. According to this model analysis, the binding of cAMP to the channels exerts multiple effects on the voltage-dependent gating: It stabilizes the open pore, reduces the total gating charge from ~8 to ~5, makes an additional closed state outside the activation pathway accessible and strongly accelerates the ON-gating but not the OFF-gating. Furthermore, the open channel has a much slower computed OFF-gating current than the closed channel, in both the absence and presence of cAMP. Together, these results provide detailed new insight into the voltage- and cAMP-induced activation gating of HCN channels.


Assuntos
Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/fisiologia , Ativação do Canal Iônico/fisiologia , Animais , AMP Cíclico/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Cinética , Cadeias de Markov , Modelos Neurológicos , Oócitos/fisiologia , Técnicas de Patch-Clamp , Canais de Potássio/fisiologia , Xenopus laevis/fisiologia
4.
Commun Biol ; 6(1): 1003, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37783870

RESUMO

Ligand-gated ion channels are formed by three to five subunits that control the opening of the pore in a cooperative fashion. We developed a microfluidic chip-based technique for studying ion currents and fluorescence signals in either excised membrane patches or whole cells to measure activation and deactivation kinetics of the channels as well as ligand binding and unbinding when using confocal patch-clamp fluorometry. We show how this approach produces in a few seconds either unidirectional concentration-activation relationships at or near equilibrium and, moreover, respective time courses of activation and deactivation for a large number of freely designed steps of the ligand concentration. The short measuring period strongly minimizes the contribution of disturbing superimposing effects such as run-down phenomena and desensitization effects. To validate gating mechanisms, complex kinetic schemes are quantified without the requirement to have data at equilibrium. The new method has potential for functionally analyzing any ligand-gated ion channel and, beyond, also for other receptors.


Assuntos
Canais Iônicos de Abertura Ativada por Ligante , Canais Iônicos de Abertura Ativada por Ligante/metabolismo , Ligantes
5.
J Gen Physiol ; 154(6)2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35486087

RESUMO

Ligand-gated ion channels are oligomers containing several binding sites for the ligands. However, the signal transmission from the ligand binding site to the pore has not yet been fully elucidated for any of these channels. In heteromeric channels, the situation is even more complex than in homomeric channels. Using published data for concatamers of heteromeric cyclic nucleotide-gated channels, we show that, on theoretical grounds, multiple functional parameters of the individual subunits can be determined with high precision. The main components of our strategy are (1) the generation of a defined subunit composition by concatenating multiple subunits, (2) the construction of 16 concatameric channels, which differ in systematically permutated binding sites, (3) the determination of respectively differing concentration-activation relationships, and (4) a complex global fit analysis with corresponding intimately coupled Markovian state models. The amount of constraints in this approach is exceedingly high. Furthermore, we propose a stochastic fit analysis with a scaled unitary start vector of identical elements to avoid any bias arising from a specific start vector. Our approach enabled us to determine 23 free parameters, including 4 equilibrium constants for the closed-open isomerizations, 4 disabling factors for the mutations of the different subunits, and 15 virtual equilibrium-association constants in the context of a 4-D hypercube. From the virtual equilibrium-association constants, we could determine 32 equilibrium-association constants of the subunits at different degrees of ligand binding. Our strategy can be generalized and is therefore adaptable to other ion channels.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos , Sítios de Ligação , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Ligantes
6.
Sci Rep ; 10(1): 21751, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33303878

RESUMO

Ionotropic purinergic (P2X) receptors are trimeric channels that are activated by the binding of ATP. They are involved in multiple physiological functions, including synaptic transmission, pain and inflammation. The mechanism of activation is still elusive. Here we kinetically unraveled and quantified subunit activation in P2X2 receptors by an extensive global fit approach with four complex and intimately coupled kinetic schemes to currents obtained from wild type and mutated receptors using ATP and its fluorescent derivative 2-[DY-547P1]-AET-ATP (fATP). We show that the steep concentration-activation relationship in wild type channels is caused by a subunit flip reaction with strong positive cooperativity, overbalancing a pronounced negative cooperativity for the three ATP binding steps, that the net probability fluxes in the model generate a marked hysteresis in the activation-deactivation cycle, and that the predicted fATP binding matches the binding measured by fluorescence. Our results shed light into the intricate activation process of P2X channels.


Assuntos
Receptores Purinérgicos P2X2/metabolismo , Trifosfato de Adenosina/metabolismo , Células HEK293 , Humanos , Inflamação/genética , Dor/genética , Ligação Proteica , Receptores Purinérgicos P2X2/fisiologia , Transmissão Sináptica/genética
7.
Nat Commun ; 9: 16207, 2018 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-29600802

RESUMO

This corrects the article DOI: 10.1038/ncomms3866.

9.
Sci Rep ; 6: 20974, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26858151

RESUMO

In multimeric membrane receptors the cooperative action of the subunits prevents exact knowledge about the operation and the interaction of the individual subunits. We propose a method that permits quantification of ligand binding to and activation effects of the individual binding sites in a multimeric membrane receptor. The power of this method is demonstrated by gaining detailed insight into the subunit action in olfactory cyclic nucleotide-gated CNGA2 ion channels.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Oócitos/metabolismo , Animais , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Feminino , Ligantes , Oócitos/citologia , Ratos , Xenopus laevis
10.
Nat Commun ; 4: 2866, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24287615

RESUMO

Tetrameric cyclic nucleotide-gated (CNG) channels mediate receptor potentials in olfaction and vision. The channels are activated by the binding of cyclic nucleotides to a binding domain embedded in the C terminus of each subunit. Here using a fluorescent cGMP derivative (fcGMP), we show for homotetrameric CNGA2 channels that ligand unbinding is ~50 times faster at saturating than at subsaturating fcGMP. Analysis with complex Markovian models reveals two pathways for ligand unbinding; the partially liganded open channel unbinds its ligands from closed states only, whereas the fully liganded channel reaches a different open state from which it unbinds all four ligands rapidly. Consequently, the transition pathways for ligand binding and activation of a fully liganded CNGA2 channel differ from that of ligand unbinding and deactivation, resulting in pronounced hysteresis of the gating mechanism. This concentration-dependent gating mechanism allows the channels to respond to changes in the cyclic nucleotide concentration with different kinetics.


Assuntos
GMP Cíclico/metabolismo , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Animais , GMP Cíclico/química , Canais de Cátion Regulados por Nucleotídeos Cíclicos/química , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Dimerização , Feminino , Cinética , Ligantes , Oócitos/química , Oócitos/metabolismo , Técnicas de Patch-Clamp , Ligação Proteica , Proteínas de Xenopus/química , Proteínas de Xenopus/genética , Xenopus laevis/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA