Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Nature ; 569(7754): 108-111, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31019302

RESUMO

Understanding which species and ecosystems will be most severely affected by warming as climate change advances is important for guiding conservation and management. Both marine and terrestrial fauna have been affected by warming1,2 but an explicit comparison of physiological sensitivity between the marine and terrestrial realms has been lacking. Assessing how close populations live to their upper thermal limits has been challenging, in part because extreme temperatures frequently drive demographic responses3,4 and yet fauna can use local thermal refugia to avoid extremes5-7. Here we show that marine ectotherms experience hourly body temperatures that are closer to their upper thermal limits than do terrestrial ectotherms across all latitudes-but that this is the case only if terrestrial species can access thermal refugia. Although not a direct prediction of population decline, this thermal safety margin provides an index of the physiological stress caused by warming. On land, the smallest thermal safety margins were found for species at mid-latitudes where the hottest hourly body temperatures occurred; by contrast, the marine species with the smallest thermal safety margins were found near the equator. We also found that local extirpations related to warming have been twice as common in the ocean as on land, which is consistent with the smaller thermal safety margins at sea. Our results suggest that different processes will exacerbate thermal vulnerability across these two realms. Higher sensitivities to warming and faster rates of colonization in the marine realm suggest that extirpations will be more frequent and species turnover faster in the ocean. By contrast, terrestrial species appear to be more vulnerable to loss of access to thermal refugia, which would make habitat fragmentation and changes in land use critical drivers of species loss on land.


Assuntos
Organismos Aquáticos/fisiologia , Temperatura Corporal/fisiologia , Ecossistema , Aquecimento Global/estatística & dados numéricos , Temperatura Alta , Animais , Biodiversidade , Conservação dos Recursos Naturais/tendências , Oceanos e Mares , Fatores de Tempo
2.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33827928

RESUMO

The mode and extent of rapid evolution and genomic change in response to human harvesting are key conservation issues. Although experiments and models have shown a high potential for both genetic and phenotypic change in response to fishing, empirical examples of genetic responses in wild populations are rare. Here, we compare whole-genome sequence data of Atlantic cod (Gadus morhua) that were collected before (early 20th century) and after (early 21st century) periods of intensive exploitation and rapid decline in the age of maturation from two geographically distinct populations in Newfoundland, Canada, and the northeast Arctic, Norway. Our temporal, genome-wide analyses of 346,290 loci show no substantial loss of genetic diversity and high effective population sizes. Moreover, we do not find distinct signals of strong selective sweeps anywhere in the genome, although we cannot rule out the possibility of highly polygenic evolution. Our observations suggest that phenotypic change in these populations is not constrained by irreversible loss of genomic variation and thus imply that former traits could be reestablished with demographic recovery.


Assuntos
Biomassa , Gadus morhua/genética , Instabilidade Genômica , Polimorfismo Genético , Animais , Oceano Atlântico , Evolução Molecular , Gadus morhua/fisiologia
3.
Ecol Appl ; 30(1): e01994, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31468660

RESUMO

There are concerns that increasing anthropogenic stressors can cause catastrophic transitions in ecosystems. Such shifts have large social, economic, and ecological consequences and therefore have important management implications. A potential mechanism behind these regime shifts is the Allee effect, which describes the decline in realized per capita growth rate at small population density. With an age-structured population model for Atlantic cod, Gadus morhua, we illustrate how interactions between human-induced stressors, such as fishing and climate change, can worsen the impact of an Allee effect on populations by promoting hysteresis. Therefore, the risk of population collapse and recovery failure is exacerbated and the success of preventing and reverting collapse depends on the climate regime. We find that, in presence of the Allee effect, a fishing moratorium is only sufficient for recovery when sea surface temperature rise remains within 2°C and fishing is restricted within 10 yrs. If sea surface temperature rises beyond 2°C, even immediate banning of fishing is not sufficient to guarantee recovery. If fishing is not fully banned and a residual fishing pressure remains, the probability of recovery is further decreased, also in the absence of an Allee effect. The results underscore the decisive role of Allee effects for the management of depleted populations in an increasingly human-dominated world. Once the population collapses and its growth rate is suppressed, rebuilding measures will be squandered and collapse will very likely be irreversible. We therefore emphasize the need for proactive management involving precautionary, adaptive measures and reference points. Our studies shows that climate change has the potential to strengthen Allee effects, which could increasingly challenge fisheries management.


Assuntos
Pesqueiros , Gadus morhua , Animais , Mudança Climática , Ecossistema , Humanos , Dinâmica Populacional
4.
Proc Natl Acad Sci U S A ; 113(52): 15030-15035, 2016 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-27940913

RESUMO

The relative roles of density dependence and life history evolution in contributing to rapid fisheries-induced trait changes remain debated. In the 1930s, northeast Arctic cod (Gadus morhua), currently the world's largest cod stock, experienced a shift from a traditional spawning-ground fishery to an industrial trawl fishery with elevated exploitation in the stock's feeding grounds. Since then, age and length at maturation have declined dramatically, a trend paralleled in other exploited stocks worldwide. These trends can be explained by demographic truncation of the population's age structure, phenotypic plasticity in maturation arising through density-dependent growth, fisheries-induced evolution favoring faster-growing or earlier-maturing fish, or a combination of these processes. Here, we use a multitrait eco-evolutionary model to assess the capacity of these processes to reproduce 74 y of historical data on age and length at maturation in northeast Arctic cod, while mimicking the stock's historical harvesting regime. Our results show that model predictions critically depend on the assumed density dependence of growth: when this is weak, life history evolution might be necessary to prevent stock collapse, whereas when a stronger density dependence estimated from recent data is used, the role of evolution in explaining fisheries-induced trait changes is diminished. Our integrative analysis of density-dependent growth, multitrait evolution, and stock-specific time series data underscores the importance of jointly considering evolutionary and ecological processes, enabling a more comprehensive perspective on empirically observed stock dynamics than previous studies could provide.


Assuntos
Evolução Molecular , Pesqueiros , Gadus morhua/crescimento & desenvolvimento , Algoritmos , Animais , Evolução Biológica , Biomassa , Tamanho Corporal , Ecologia , Feminino , Variação Genética , Estágios do Ciclo de Vida , Funções Verossimilhança , Masculino , Fenótipo , Dinâmica Populacional , Probabilidade , Fatores de Tempo
5.
Proc Natl Acad Sci U S A ; 110(30): 12259-64, 2013 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-23836660

RESUMO

Fish stocks experiencing high fishing mortality show a tendency to mature earlier and at a smaller size, which may have a genetic component and therefore long-lasting economic and biological effects. To date, the economic effects of such ecoevolutionary dynamics have not been empirically investigated. Using 70 y of data, we develop a bioeconomic model for Northeast Arctic cod to compare the economic yield in a model in which life-history traits can vary only through phenotypic plasticity with a model in which, in addition, genetic changes can occur. We find that evolutionary changes toward faster growth and earlier maturation occur consistently even if a stock is optimally managed. However, if a stock is managed optimally, the evolutionary changes actually increase economic yield because faster growth and earlier maturation raise the stock's productivity. The optimal fishing mortality is almost identical for the evolutionary and nonevolutionary model and substantially lower than what it has been historically. Therefore, the costs of ignoring evolution under optimal management regimes are negligible. However, if fishing mortality is as high as it has been historically, evolutionary changes may result in economic losses, but only if the fishery is selecting for medium-sized individuals. Because evolution facilitates growth, the fish are younger and still immature when they are susceptible to getting caught, which outweighs the increase in productivity due to fish spawning at an earlier age.


Assuntos
Evolução Biológica , Pesqueiros/economia
6.
Ecol Appl ; 25(7): 1860-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26591452

RESUMO

By removing individuals with certain heritable characteristics such as large body size, harvesting may induce rapid evolutionary change in fish life history. There is controversy, however, as to the prevalence of fisheries-induced evolution (FIE) and to what extent it should be considered as part of sustainable resource management. Recent research has shown that FIE can be difficult to detect and its economic effects might not always be significant. Here, we show how population growth rate (r), a critical factor affecting sustainability and recovery, is affected by FIE through the analysis of a simulation model that demonstrates the link between individual-level genetic processes and stock dynamics. We examine how different levels of evolvability, fishing intensity, and density-dependence interact to influence r in three commercially harvested species: Atlantic cod (Gadus morhua), lake whitefish (Coregonus clupeaformis), and yellow perch (Perca flavescens). We demonstrate that at low harvest levels, evolution has minimal effect on r for all three species. However, at the harvest rates experienced by many fish stocks, evolution increases r and reduces the risk of collapse for cod and whitefish. During the initial stages of a harvest moratorium, a switch occurs, and r becomes reduced as a consequence of evolution. These results explain how evolution increases stock resilience, but also impedes recovery after periods of intense harvesting.


Assuntos
Evolução Biológica , Ecossistema , Pesqueiros , Peixes/genética , Peixes/fisiologia , Modelos Biológicos , Animais , Simulação por Computador , Reprodução
8.
Nature ; 456(7218): 93-7, 2008 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-18987742

RESUMO

The population cycles of rodents at northern latitudes have puzzled people for centuries, and their impact is manifest throughout the alpine ecosystem. Climate change is known to be able to drive animal population dynamics between stable and cyclic phases, and has been suggested to cause the recent changes in cyclic dynamics of rodents and their predators. But although predator-rodent interactions are commonly argued to be the cause of the Fennoscandian rodent cycles, the role of the environment in the modulation of such dynamics is often poorly understood in natural systems. Hence, quantitative links between climate-driven processes and rodent dynamics have so far been lacking. Here we show that winter weather and snow conditions, together with density dependence in the net population growth rate, account for the observed population dynamics of the rodent community dominated by lemmings (Lemmus lemmus) in an alpine Norwegian core habitat between 1970 and 1997, and predict the observed absence of rodent peak years after 1994. These local rodent dynamics are coherent with alpine bird dynamics both locally and over all of southern Norway, consistent with the influence of large-scale fluctuations in winter conditions. The relationship between commonly available meteorological data and snow conditions indicates that changes in temperature and humidity, and thus conditions in the subnivean space, seem to markedly affect the dynamics of alpine rodents and their linked groups. The pattern of less regular rodent peaks, and corresponding changes in the overall dynamics of the alpine ecosystem, thus seems likely to prevail over a growing area under projected climate change.


Assuntos
Arvicolinae/fisiologia , Ecossistema , Efeito Estufa , Animais , Aves/fisiologia , História do Século XX , História do Século XXI , Umidade , Modelos Biológicos , Noruega , Dinâmica Populacional , Estações do Ano , Neve , Temperatura
9.
Mar Policy ; 39: 172-181, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-26525860

RESUMO

Harvest control rules (HCRs) have been implemented for many fisheries worldwide. However, in most instances, those HCRs are not based on the explicit feedbacks between stock properties and economic considerations. This paper develops a bio-economic model that evaluates the HCR adopted in 2004 by the Joint Norwegian-Russian Fishery Commission to manage the world's largest cod stock, Northeast Arctic cod (NEA). The model considered here is biologically and economically detailed, and is the first to compare the performance of the stock's current HCR with that of alternative HCRs derived with optimality criteria. In particular, HCRs are optimized for economic objectives including fleet profits, economic welfare, and total yield and the emerging properties are analyzed. The performance of these optimal HCRs was compared with the currently used HCR. This paper show that the current HCR does in fact comes very close to maximizing profits. Furthermore, the results reveal that the HCR that maximizes profits is the most precautionary one among the considered HCRs. Finally, the HCR that maximizes yield leads to un-precautionary low levels of biomass. In these ways, the implementation of the HCR for NEA cod can be viewed as a success story that may provide valuable lessons for other fisheries.

10.
Proc Biol Sci ; 274(1610): 661-9, 2007 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-17254990

RESUMO

Proper management of ecosystems requires an understanding of both the species interactions as well as the effect of climate variation. However, a common problem is that the available time-series are of different lengths. Here, we present a general approach for studying the dynamic structure of such interactions. Specifically, we analyse the recruitment of the world's largest cod stock, the Northeast Arctic cod. Studies based on data starting in the 1970-1980s indicate that this stock is affected by temperature through a variety of pathways. However, the value of such studies is somewhat limited by the fact that they are based on a quite specific ecological and climatic situation. Recently, this stock has consisted of fairly young fish and the spawning stock has consisted of relatively few age groups. In this study, we develop a model for the effect of capelin (the cod's main prey) and herring on cod recruitment since 1973. Based on this model, we analyse data on cod, herring and temperature going back to 1921 and find that food-web effects explain a significant part of the cod recruitment variation back to around 1950.


Assuntos
Comportamento Alimentar/fisiologia , Pesqueiros/estatística & dados numéricos , Cadeia Alimentar , Gadus morhua/crescimento & desenvolvimento , Modelos Teóricos , Animais , Oceano Atlântico , Osmeriformes , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA