Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Brain Behav Immun ; 117: 100-111, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38199516

RESUMO

Oxycodone is the most prescribed opioid for pain management and has been available in clinics for almost a century, but effects of chronic oxycodone have been studied less than morphine in preclinical and clinical studies. Newly developed depression has been coupled with chronic oxycodone use in a few clinical studies, but no preclinical studies have investigated the pathogenesis of oxycodone-induced depression. Gut microbiome changes following oxycodone use is an understudied area, and interleukin-17A (IL-17A) is linked to both the development of mood disorders and regulation of gut microbiome. The present study investigated effects of chronic oxycodone exposure on mood-related behaviors (depression and anxiety), pain hypersensitivity, physical dependence, immune markers, and the gut microbiome and tested the hypothesis that blocking IL-17A with a systemically administered monoclonal antibody reduces oxycodone-derived effects. Oxycodone (using an incremental dosing regimen) or saline was injected twice a day for 12 days. IL-17A Ab (200 µg/100 µl) or saline was administered every 3rd day during the 12-day interval. Chronic oxycodone induced a depression-like effect, but not anxiogenic- or anxiolytic-like effects; promoted hyperalgesia; increased IL-17A and IL-6 levels in the ventral tegmental area (VTA); and induced physical dependence. IL-17A Ab co-administration with oxycodone prevented the depression-like effect and hyperalgesia, reduced naloxone-precipitated withdrawal signs, and normalized the increase in cytokine levels. Chronic oxycodone exposure did not affect gut microbiome and integrity. Our results identify a role for IL-17A in oxycodone-related behavioral and neuroimmune effects and show that IL-17A Ab has potential therapeutic value in blocking these effects. Given that humanized IL-17A Ab is approved for treatment of psoriasis and psoriatic arthritis, our findings point toward studying it for use in the treatment of oxycodone use disorder.


Assuntos
Oxicodona , Transtornos Relacionados ao Uso de Substâncias , Ratos , Animais , Oxicodona/farmacologia , Área Tegmentar Ventral , Interleucina-17/metabolismo , Interleucina-6/farmacologia , Depressão/tratamento farmacológico , Hiperalgesia/tratamento farmacológico
2.
Brain Behav Immun ; 107: 47-52, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36174884

RESUMO

P2X7 receptors are dysregulated during psychostimulant exposure. Furthermore, P2X7 receptors enhance endogenous systems (e.g., cytokines, dopamine, and glutamate) that facilitate psychostimulant addiction. Therefore, using mouse locomotor, conditioned place preference (CPP), and intracranial self-stimulation (ICSS) assays, we tested the hypothesis that methamphetamine (METH) reward and acute locomotor activation requires P2X7 receptor activity. We also investigated effects of P2X7 blockade on METH-induced changes in cytokine levels in brain reward regions. A438079 (5, 10, 50 mg/kg), a P2X7 antagonist, did not affect spontaneous locomotor activity but reduced hyperlocomotion caused by acute METH (1 mg/kg) exposure. A438079 (10 mg/kg) also prevented expression of METH CPP without causing aversive or rewarding effects. For ICSS experiments, METH (1 mg/kg) facilitated brain reward function as interpreted from reductions in baseline threshold. In the presence of A438079 (50 mg/kg), METH-induced facilitation of ICSS was reduced. Repeated METH exposure (1 mg/kg × 7 d) caused enhancement of IL-17A levels in the prefrontal cortex (PFC) that was normalized by A438070 (10 mg/kg × 7 d). The present data suggest that P2X7 receptor activity contributes to rewarding and locomotor-stimulant effects of METH through a potential mechanism involving IL-17A, which has recently been implicated in anxiety.


Assuntos
Metanfetamina , Animais , Camundongos , Metanfetamina/farmacologia , Receptores Purinérgicos P2X7 , Antagonistas do Receptor Purinérgico P2X , Interleucina-17
3.
Am J Physiol Lung Cell Mol Physiol ; 317(4): L475-L485, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31313616

RESUMO

The alveolus participates in gas exchange, which can be impaired by environmental factors and toxins. There is an increase in using electronic cigarettes (e-cigarettes); however, their effect on human primary alveolar epithelial cells is unknown. Human lungs were obtained from nonsmoker organ donors to isolate alveolar type II (ATII) cells. ATII cells produce and secrete pulmonary surfactant and restore the epithelium after damage, and mitochondrial function is important for their metabolism. Our data indicate that human ATII cell exposure to e-cigarette aerosol increased IL-8 levels and induced DNA damage and apoptosis. We also studied the cytoprotective effect of DJ-1 against ATII cell injury. DJ-1 knockdown in human primary ATII cells sensitized cells to mitochondrial dysfunction as detected by high mitochondrial superoxide production, decreased mitochondrial membrane potential, and calcium elevation. DJ-1 knockout (KO) mice were more susceptible to ATII cell apoptosis and lung injury induced by e-cigarette aerosol compared with wild-type mice. Regulation of the oxidative phosphorylation (OXPHOS) is important for mitochondrial function and protection against oxidative stress. Major subunits of the OXPHOS system are encoded by both nuclear and mitochondrial DNA. We found dysregulation of OXPHOS complexes in DJ-1 KO mice after exposure to e-cigarette aerosol, which could disrupt the nuclear/mitochondrial stoichiometry, resulting in mitochondrial dysfunction. Together, our results indicate that DJ-1 deficiency sensitizes ATII cells to damage induced by e-cigarette aerosol leading to lung injury.


Assuntos
Células Epiteliais Alveolares/efeitos dos fármacos , Sistemas Eletrônicos de Liberação de Nicotina , Interleucina-8/genética , Nicotina/farmacologia , Proteína Desglicase DJ-1/genética , Aerossóis , Células Epiteliais Alveolares/citologia , Células Epiteliais Alveolares/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Cálcio/metabolismo , Dano ao DNA , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Interleucina-8/metabolismo , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Knockout , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Cultura Primária de Células , Proteína Desglicase DJ-1/deficiência , Proteína Desglicase DJ-1/metabolismo , Alvéolos Pulmonares/citologia , Alvéolos Pulmonares/efeitos dos fármacos , Alvéolos Pulmonares/metabolismo , Superóxidos/metabolismo
4.
J Pharmacol Exp Ther ; 367(3): 433-441, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30249618

RESUMO

Crossdesensitization between opioid and chemokine receptors and involvement of chemokines in pain modulation are well established. We investigated if coadministration of chemokine receptor antagonists (CRAs) with morphine would enhance the analgesic potency of morphine on incisional pain in rats. Animals underwent incisional surgery on the left hind paw and pain responses were evaluated using von Frey filaments at various time points postsurgery between 15 and 360 minutes and daily between 24 and 72 hours. Dose-response curves for morphine, maraviroc (a CCR5 antagonist), and AMD3100 (a CXCR4 antagonist) alone were established. While morphine significantly reduced pain in a time- and dose-dependent manner, maraviroc and AMD3100 had no effect by themselves. Coadministration of either maraviroc or AMD3100 with morphine significantly increased morphine's analgesic effect on incisional pain, shifting the dose-response curve to the left 2.3- and 1.8-fold, respectively. Coadministration of both CRAs with morphine significantly shifted further the morphine dose-response curve to the left 3.3-fold. The effect of treatments on mRNA levels in the draining popliteal lymph node for a panel of chemokines and cytokines showed that message for many of these mediators was upregulated by the incision, and the combination of morphine with the CRAs markedly downregulated them. The data show that combining morphine with CRAs potentiates morphine's analgesic effect on incisional pain. Thus, the same analgesic effect of morphine alone can be achieved with lower doses of morphine when combined with CRAs. Using morphine in lower doses could reduce unwanted side effects and possibly block development of tolerance and dependence.


Assuntos
Analgésicos Opioides/farmacologia , Morfina/farmacologia , Dor/tratamento farmacológico , Receptores de Quimiocinas/antagonistas & inibidores , Animais , Regulação para Baixo/efeitos dos fármacos , Tolerância a Medicamentos/fisiologia , Masculino , Dor/metabolismo , Medição da Dor/métodos , Ratos , Ratos Sprague-Dawley , Receptores CXCR4/metabolismo
6.
Am J Hum Biol ; 25(5): 681-94, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23907837

RESUMO

OBJECTIVES: We assessed the impact of a high frequency, functionally significant allelic variant of the progesterone receptor gene (PROGINS) on endometrial function and menstrual cycle characteristics. Further we asked whether PROGINS moderates the impact of life history characteristics, anthropometric measures, and physical activity on endometrial function. METHODS: Fifty-two women were genotyped for the PROGINS variant, provided life history information, and had anthropometric measurements made. Women monitored their menstrual bleeding for three cycles, performed mid-cycle urinary ovulation tests, and recorded physical activity. A subset of women provided daily saliva samples and had mid-luteal endometrial thickness measurements taken during the third menstrual cycle. Salivary progesterone was assayed using ELISAs. The direct impact of PROGINS on endometrial and menstrual cycle characteristics was determined via independent t-tests with Bonferroni correction. Interactions between PROGINS and covariates were assessed by moderated regression. RESULTS: PROGINS did not directly impact any indicator of endometrial function. However, PROGINS caused an increase in menstrual cycle length with increasing mid-luteal progesterone levels; the opposite relationship was present in noncarriers (P < 0.05). Additionally, PROGINS interacted with four of six anthropometric measures (BMI, waist circumference, height, and waist-hip ratio) to impact endometrial function, however, interactions between PROGINS and life history variables, or physical activity was limited. CONCLUSIONS: The gene x environment interactions we report suggest that PROGINS alters endometrial sensitivity to maternal energetic condition. Thus, the possibility of genetically-based variation in sensitivity to energetic stress should be considered in future adaptive models of women's reproduction.


Assuntos
Endométrio/fisiologia , Interação Gene-Ambiente , Ciclo Menstrual , Receptores de Progesterona/genética , Adulto , Antropometria , Metabolismo Energético , Feminino , Humanos , Pessoa de Meia-Idade , Atividade Motora , Progesterona/metabolismo , Receptores de Progesterona/metabolismo , Reprodução , Adulto Jovem
7.
Brain Res ; 1806: 148310, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36871847

RESUMO

Psychostimulant exposure and withdrawal cause neuroimmune dysregulation and anxiety that contributes to dependence and relapse. Here, we tested the hypothesis that withdrawal from the synthetic cathinone MDPV (methylenedioxypyrovalerone) produces anxiety-like effects and enhanced levels of mesocorticolimbic cytokines that are inhibited by cyanidin, an anti-inflammatory flavonoid and nonselective blocker of IL-17A signaling. For comparison, we tested effects on glutamate transporter systems that are also dysregulated during psychostimulant free period. Rats injected for 9 d with MDPV (1 mg/kg, IP) or saline were pretreated daily with cyanidin (0.5 mg/kg, IP) or saline, followed by behavioral testing on the elevated zero maze (EZM) 72 h after the last MDPV injection. MDPV withdrawal caused a reduction in time spent on the open arm of the EZM that was prevented by cyanidin. Cyanidin itself did not affect locomotor activity or time spent on the open arm, or cause aversive or rewarding effects in place preference experiments. MDPV withdrawal caused enhancement of cytokine levels (IL-17A, IL-1ß, IL-6, TNF=α, IL-10, and CCL2) in the ventral tegmental area, but not amygdala, nucleus accumbens, or prefrontal cortex, that was prevented by cyanidin. During MDPV withdrawal, mRNA levels of glutamate aspartate transporter (GLAST) and glutamate transporter subtype 1 (GLT-1) in the amygdala were also elevated but normalized by cyanidin treatment. These results show that MDPV withdrawal induced anxiety, and brain-region specific dysregulation of cytokine and glutamate systems, that are both prevented by cyanidin, thus identifying cyanidin for further investigation in the context of psychostimulant dependence and relapse.


Assuntos
Estimulantes do Sistema Nervoso Central , Catinona Sintética , Ratos , Animais , Interleucina-17 , Citocinas , Estimulantes do Sistema Nervoso Central/toxicidade , Ansiedade/induzido quimicamente , Benzodioxóis/farmacologia , Pirrolidinas/farmacologia
8.
J Clin Invest ; 133(6)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36656645

RESUMO

Treatment options for alcohol use disorders (AUDs) have minimally advanced since 2004, while the annual deaths and economic toll have increased alarmingly. Phosphodiesterase type 4 (PDE4) is associated with alcohol and nicotine dependence. PDE4 inhibitors were identified as a potential AUD treatment using a bioinformatics approach. We prioritized a newer PDE4 inhibitor, apremilast, as ideal for repurposing (i.e., FDA approved for psoriasis, low incidence of adverse events, excellent safety profile) and tested it using multiple animal strains and models, as well as in a human phase IIa study. We found that apremilast reduced binge-like alcohol intake and behavioral measures of alcohol motivation in mouse models of genetic risk for drinking to intoxication. Apremilast also reduced excessive alcohol drinking in models of stress-facilitated drinking and alcohol dependence. Using site-directed drug infusions and electrophysiology, we uncovered that apremilast may act to lessen drinking in mice by increasing neural activity in the nucleus accumbens, a key brain region in the regulation of alcohol intake. Importantly, apremilast (90 mg/d) reduced excessive drinking in non-treatment-seeking individuals with AUD in a double-blind, placebo-controlled study. These results demonstrate that apremilast suppresses excessive alcohol drinking across the spectrum of AUD severity.


Assuntos
Alcoolismo , Inibidores da Fosfodiesterase 4 , Psoríase , Humanos , Camundongos , Animais , Talidomida/farmacologia , Inibidores da Fosfodiesterase 4/farmacologia , Inibidores da Fosfodiesterase 4/uso terapêutico , Psoríase/tratamento farmacológico , Etanol , Consumo de Bebidas Alcoólicas/genética
9.
Life Sci ; 306: 120788, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35817166

RESUMO

AIMS: We determined the ability of the multi-chemokine receptor (CCR2/CCR5/CCR8) antagonist RAP-103 to modulate pain behaviors in an acute model of surgical pain, with and without an added opioid (morphine), and by itself in a chronic model of Streptozotocin (STZ)-induced diabetic peripheral neuropathy (DPN). MATERIALS AND METHODS: Pain behaviors were assessed by mechanical and thermal tests in rats. Cytokine and chemokine biomarkers in sciatic nerve and spinal cord were assessed by in situ qPCR. KEY FINDINGS: In the incisional pain assay, RAP-103 (0.01-1 mg/kg, i.p.) alone had no antiallodynic effect post-surgery. RAP-103 (0.5 mg/kg) when co-administered with morphine (0.5-5 mg/kg), reduced the ED50 of morphine from 3.19 mg/kg to 1.42 mg/kg. In a DPN model, rats exhibited persistent mechanical and cold allodynia. Oral administration of RAP-103 (0.5-0.02 mg/kg/day) resulted in a complete reversal of established hypersensitivity in DPN rats (P < .001), which gradually returned to pain hypersensitivity after the cessation of the treatment. The mRNA expression of cytokines, IL-1ß, TNFα; chemokines CCL2, CCL3; and chemokine receptors CCR2 and CCR5 in DPN rat sciatic nerve, but not spinal cord, were significantly increased. RAP-103 resulted in significant reductions in sciatic nerve expression of IL-1ß, TNFα and CCL3 in STZ-induced diabetic rats with trends toward lower levels for CCL2 and CCR5, while CCR2 was unchanged. SIGNIFICANCE: In acute pain, co-administration of RAP-103 with morphine provided the same antinociceptive effect with a reduced dose of morphine, reducing opioid side-effects and risks. RAP-103 by itself is an effective non-opioid antinociceptive treatment for diabetic neuropathic pain.


Assuntos
Diabetes Mellitus Experimental , Neuropatias Diabéticas , Neuralgia , Animais , Ratos , Analgésicos Opioides/farmacologia , Analgésicos Opioides/uso terapêutico , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Neuropatias Diabéticas/tratamento farmacológico , Hiperalgesia/metabolismo , Morfina/farmacologia , Morfina/uso terapêutico , Neuralgia/metabolismo , Peptídeos/uso terapêutico , Receptores de Quimiocinas , Fator de Necrose Tumoral alfa
10.
Infect Immun ; 79(8): 3317-27, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21576323

RESUMO

Acinetobacter baumannii is a nosocomial pathogen with a high prevalence of multiple-drug-resistant strains, causing pneumonia and sepsis. The current studies further develop a systemic mouse model of this infection and characterize selected innate immune responses to the organism. Five clinical isolates, with various degrees of antibiotic resistance, were assessed for virulence in two mouse strains, and between male and female mice, using intraperitoneal infection. A nearly 1,000-fold difference in virulence was found between bacterial strains, but no significant differences between sexes or mouse strains were observed. It was found that microbes disseminated rapidly from the peritoneal cavity to the lung and spleen, where they replicated. A persistent septic state was observed. The infection progressed rapidly, with mortality between 36 and 48 h. Depletion of neutrophils with antibody to Ly-6G decreased mean time to death and increased mortality. Interleukin-17 (IL-17) promotes the response of neutrophils by inducing production of the chemokine keratinocyte-derived chemoattractant (KC/CXCL1), the mouse homolog of human IL-8. Acinetobacter infection resulted in biphasic increases in both IL-17 and KC/CXCL1. Depletion of neither IL-17 nor KC/CXCL1, using specific antibodies, resulted in a difference in bacterial burdens in organs of infected mice at 10 h postinfection. Comparison of bacterial burdens between IL-17a(-/-) and wild-type mice confirmed that the absence of this cytokine did not sensitize mice to Acinetobacter infection. These studies definitely demonstrate the importance of neutrophils in resistance to systemic Acinetobacter infection. However, neither IL-17 nor KC/CXCL1 alone is required for effective host defense to systemic infection with this organism.


Assuntos
Infecções por Acinetobacter/imunologia , Acinetobacter baumannii/imunologia , Imunidade Inata , Interleucina-17/imunologia , Neutrófilos/imunologia , Sepse/imunologia , Infecções por Acinetobacter/patologia , Acinetobacter baumannii/patogenicidade , Estruturas Animais/microbiologia , Animais , Carga Bacteriana , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Sepse/microbiologia , Sepse/patologia , Fatores de Tempo , Virulência
11.
Brain Behav Immun ; 25(7): 1434-43, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21569838

RESUMO

Recently, we have shown that morphine's analgesic activity can be attenuated by chemokines, specifically CCL5 and CXCL12. Because the HIV-1 coat protein, glycoprotein 120 (gp120), binds to the same receptors as do CCL5 and CXCL12, experiments were designed to investigate the effect of gp120 in the brain on antinociception induced by morphine in the cold-water (-3°C) tail-flick (CWT) and hot-plate (+54°C) tests. In addition, mu-opioid-receptor-mediated effects in brain periaqueductal grey (PAG) slices were examined with whole-cell patch-clamp recordings. The results showed that (1) pretreatment with gp120 itself (10, 25, 50, 100 or 133 ng, PAG) had no nociceptive effect in the CWT; (2) pretreatment with gp120 (25 or 100 ng) dose-dependently reduced antinociception induced by subcutaneous (sc) injection of morphine (3 or 6 mg/kg) or PAG injection of morphine (100 ng) in the CWT; (3) a PAG injection of gp120 (133 ng), given 30 min before sc injection of morphine (6 mg/kg), similarly reduced morphine antinociception in the hot-plate test; (4) the inhibitory effect of gp120 on morphine-induced antinociception in the CWT was reversed by AMD3100, an antagonist of CXCR4; (5) pretreatment of slices with gp120 (200 pM) prevented morphine (10 µM)-induced hyperpolarization and reduction of input resistance in PAG neurons. Electrophysiology studies paralleled gp120-induced desensitization of a mu-opioid-receptor-mediated response in PAG neurons at the single-cell level. These studies are the first to demonstrate that the analgesic activity of morphine can be reduced by the presence of gp120 in the PAG and that pretreatment with AMD3100 is able to restore the analgesic effects of morphine.


Assuntos
Analgésicos Opioides/farmacologia , Proteína gp120 do Envelope de HIV/farmacologia , Morfina/farmacologia , Medição da Dor/efeitos dos fármacos , Percepção da Dor/efeitos dos fármacos , Analgesia , Animais , Comportamento Animal/efeitos dos fármacos , Benzilaminas , Temperatura Baixa , Ciclamos , Relação Dose-Resposta a Droga , Interações Medicamentosas , Compostos Heterocíclicos/farmacologia , Temperatura Alta , Masculino , Potenciais da Membrana/efeitos dos fármacos , Substância Cinzenta Periaquedutal/efeitos dos fármacos , Substância Cinzenta Periaquedutal/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores CXCR4/antagonistas & inibidores , Receptores Opioides mu/metabolismo
12.
Front Pharmacol ; 12: 804950, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35185546

RESUMO

Previous work from our laboratory showed that a CB2 selective agonist, O-1966, blocked the proliferative response of C57BL/6 mouse spleen cells exposed to spleen cells of C3HeB/FeJ mice in vitro in the mixed lymphocyte reaction (MLR). The MLR is widely accepted as an in vitro correlate of in vivo grant rejection. Mechanisms of the immunosuppression induced by the cannabinoid were explored, and it was shown that O-1966 in this in vitro assay induced CD25+Foxp3+ Treg cells and IL-10, as well as down-regulated mRNA for CD40 and the nuclear form of the transcription factors NF-κB and NFAT in T-cells. The current studies tested the efficacy of O-1966 in prolonging skin grafts in vivo. Full thickness flank skin patches (1-cm2) from C3HeB/FeJ mice were grafted by suturing onto the back of C57BL/6 mice. O-1966 or vehicle was injected intraperitoneally into treated or control groups of animals beginning 1 h pre-op, and then every other day until 14 days post-op. Graft survival was scored based on necrosis and rejection. Treatment with 5 mg/kg of O-1966 prolonged mean graft survival time from 9 to 11 days. Spleens harvested from O-1966 treated mice were significantly smaller than those of vehicle control animals based on weight. Flow cytometry analysis of CD4+ spleen cells showed that O-1966 treated animals had almost a 3-fold increase in CD25+Foxp3+ Treg cells compared to controls. When dissociated spleen cells were placed in culture ex vivo and stimulated with C3HeB/FeJ cells in an MLR, the cells from the O-1966 treated mice were significantly suppressed in their proliferative response to the allogeneic cells. These results support CB2 selective agonists as a new class of compounds to prolong graft survival in transplant patients.

13.
Front Neurosci ; 15: 772946, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975380

RESUMO

Post-traumatic stress disorder (PTSD) is initiated by traumatic-stress exposure and manifests into a collection of symptoms including increased anxiety, sleep disturbances, enhanced response to triggers, and increased sympathetic nervous system arousal. PTSD is highly co-occurring with alcohol use disorder. Only some individuals experiencing traumatic stress develop PTSD and a subset of individuals with PTSD develop co-occurring alcohol use disorder. To investigate the basis of these individual responses to traumatic stress, single prolonged stress (SPS) a rodent model of traumatic stress was applied to young adult female rats. Individual responses to SPS were characterized by measuring anxiety-like behaviors with open field and elevated plus maze tests. Rats were then allowed to drink ethanol under an intermittent two bottle choice procedure for 8 weeks, and ethanol consumption was measured. An artificial intelligence algorithm was built to predict resilient and vulnerable individuals based on data from anxiety testing and ethanol consumption. This model was implemented in a second cohort of rats that underwent SPS without ethanol drinking to identify resilient and vulnerable individuals for further study. Analysis of neuropeptide Y (NPY) levels and expression of its receptors Y1R and Y2R mRNA in the central nucleus of the amygdala (CeA), basolateral amygdala (BLA), and bed nucleus stria terminalis (BNST) were performed. Results demonstrate that resilient rats had higher expression of Y2R mRNA in the CeA compared with vulnerable and control rats and had higher levels of NPY protein in the BNST compared to controls. The results of the study show that an artificial intelligence algorithm can identify individual differences in response to traumatic stress which can be used to predict subsequent ethanol drinking, and the NPY pathway is differentially altered following traumatic stress exposure in resilient and vulnerable populations. Understanding neurochemical alterations following traumatic-stress exposure is critical in developing prevention strategies for the vulnerable phenotype and will help further development of novel therapeutic approaches for individuals suffering from PTSD and at risk for alcohol use disorder.

14.
Life Sci ; 285: 120014, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34619167

RESUMO

AIMS: We have shown that chemokines injected into the periaqueductal gray region of the brain blocks opioid-induced analgesia in the rat cold-water tail flick test (CWTF). The present experiments tested whether chemokine receptor antagonists (CRAs), in combination with sub-analgesic doses of morphine, would provide maximal analgesia in the CWTF test and the mouse formalin pain assay. The effect of CRAs on respiratory depression was also evaluated. MAIN METHODS: One, two or four CRAs (AMD3100/CXCR4, maraviroc/CCR5, RS504393/CCR2 orAZD8797/CX3CR1) were used in combination with sub-analgesic doses of morphine, all given systemically. Pain was assessed using the rat CWTF test or formalin injection into the paw of mice scored by licking. Respiration and oxygen saturation were measured in rats using a MouseOX® Plus - pulse oximeter. KEY FINDINGS: In the CWTF test, a sub-maximal dose of morphine in combination with maraviroc alone, maraviroc plus AMD3100, or with the four chemokine receptor antagonists, produced synergistic increases in antinociception. In the formalin test, the combination of four CRAs plus a sub-maximal dose of morphine resulted in increased antinociception in both male and female mice. AMD3100 had an additive effect with morphine in both sexes. Coadministration of CRAs with morphine did not potentiate the opioid respiratory depressive effect. SIGNIFICANCE: These results support the conclusion that combinations of CRAs can increase the potency of sub-analgesic doses of morphine analgesia without increasing respiratory depression. The results support an "opioid sparing" strategy for alleviation of pain using reduced doses of opioids in combination with CRAs to achieve maximal analgesia.


Assuntos
Analgesia/métodos , Analgésicos Opioides/farmacologia , Morfina/farmacologia , Nociceptividade/efeitos dos fármacos , Dor Nociceptiva/tratamento farmacológico , Receptores de Quimiocinas/antagonistas & inibidores , Animais , Benzilaminas/administração & dosagem , Benzilaminas/farmacologia , Ciclamos/administração & dosagem , Ciclamos/farmacologia , Relação Dose-Resposta a Droga , Quimioterapia Combinada , Feminino , Masculino , Maraviroc/administração & dosagem , Maraviroc/farmacologia , Morfina/administração & dosagem , Morfina/efeitos adversos , Dor Nociceptiva/fisiopatologia , Pirimidinas/administração & dosagem , Pirimidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Insuficiência Respiratória/induzido quimicamente , Tiazóis/administração & dosagem , Tiazóis/farmacologia
15.
J Pharmacol Exp Ther ; 332(2): 549-53, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19906780

RESUMO

Wasting syndrome is a common complication of HIV infection and is marked by progressive weight loss and weakness, often associated with fever. The mechanisms involved in the pathogenesis of these syndromes are not well defined, and neither are the brain areas involved. The present study tests a new hypothesis: that the preoptic anterior hypothalamus (POAH), the main brain area for thermoregulation and fever, has a role in the pathogenesis of fever induced by glycoprotein 120 (gp120), the surface envelope protein used by the HIV to gain access into immune cells, and that the CXC chemokine receptors (CXCR4) that serve as a coreceptor for HIV entry mediate the effect. A sterilized stainless steel C313G cannula guide was implanted into the POAH, and a biotelemetry system was used to monitor the body temperature (Tb) changes. The administration of gp120 into the POAH induced fever in a dose-dependent manner. To demonstrate possible links between the gp120 and CXCR4 in generating the fever, we pretreated the rats with 1,1'-[1,4-phenylenebis(methylene)]bis[1,4,8,11-tetraazacyclotetradecane] octohydrobromide dihydrate (AMD 3100), an antagonist of stromal cell-derived growth factor (SDF)-1alpha/CXCL12, acting at its receptor, CXCR4, 30 min before administration of gp120. AMD 3100 significantly reduced the gp120-induced fever. The present studies show that the presence of HIV-1 envelope glycoprotein gp120 in the POAH provokes fever via interaction CXCR4 pathway.


Assuntos
Febre/etiologia , Proteína gp120 do Envelope de HIV/farmacologia , Área Pré-Óptica/efeitos dos fármacos , Receptores CXCR4/antagonistas & inibidores , Animais , Fármacos Anti-HIV/farmacologia , Benzilaminas , Temperatura Corporal/efeitos dos fármacos , Ciclamos , Febre/induzido quimicamente , Proteína gp120 do Envelope de HIV/administração & dosagem , Compostos Heterocíclicos/farmacologia , Masculino , Microinjeções , Ratos , Ratos Sprague-Dawley
16.
Microb Pathog ; 49(6): 330-5, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20688146

RESUMO

Previous studies from our laboratory demonstrated that mice treated with morphine pellets are sensitized to Salmonella enterica, serovar Typhimurium infection. However, the opioid receptor antagonist, naltrexone, only partially blocked the effect of morphine, raising the possibility that the opioid might have some of its effects through a nonopioid receptor. To further clarify whether sensitization to infection is an opioid receptor-dependent phenomenon, µ-opioid receptor knockout (MORKO) mice were used in the present study. Wild-type (WT) and MORKO mice were treated with morphine and their sensitivity to oral Salmonella infection was assessed by mortality, bacterial burdens in gut associated lymphoid tissue and in blood and peritoneal fluid, and by levels of pro-inflammatory cytokines in plasma. MORKO animals treated with morphine were refractory to a sublethal dose of Salmonella, while similar treatment of WT animals resulted in 100% mortality. WT animals treated with morphine had high bacterial loads in all organs tested, while morphine-treated MORKO animals had no culturable Salmonella in any organs. Pro-inflammatory cytokine levels were elevated in morphine-treated WT but not MORKO mice infected with Salmonella. These results provide definitive evidence that the morphine-mediated enhancement of oral Salmonella infection is dependent on the µ-opioid receptor.


Assuntos
Suscetibilidade a Doenças/induzido quimicamente , Morfina/toxicidade , Receptores Opioides mu/efeitos dos fármacos , Salmonelose Animal/microbiologia , Salmonella typhimurium/patogenicidade , Animais , Líquido Ascítico/microbiologia , Carga Bacteriana , Sangue/microbiologia , Citocinas/sangue , Modelos Animais de Doenças , Feminino , Tecido Linfoide/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Opioides mu/deficiência , Análise de Sobrevida
17.
Mil Med ; 185(Suppl 1): 130-135, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-32074321

RESUMO

INTRODUCTION: Although opioids are widely prescribed for pain, in many circumstances, they have only modest efficacy. Preclinical studies have shown that chemokines, immune mediators released during tissue injury and inflammation, can desensitize opioid receptors and block opioid analgesia by a process termed "heterologous desensitization." The present studies tested the hypothesis that in evoked pain, certain chemokine receptor antagonists (CRAs), given with a submaximal dose of morphine, would result in enhanced morphine potency. METHODS: Three rodent pain assays were used: incisional pain in rats, the cold-water tail flick test in rats, and the formalin test in mice. The FDA-approved, commercially available CRAs, maraviroc and AMD3100, were used. They block the chemokine receptors and ligands, CCR5/CCL5 (RANTES) and CXCR4/CXCL4 (SDF-1α), respectively. RESULTS: In the incisional pain assay, it was found that the combination of a single CRA, or of both CRAs, with morphine significantly shifted the morphine dose-response curve to the left, as much as 3.3-fold. In the cold-water tail flick and formalin tests, significant increases of the antinociceptive effects of morphine were also observed when combined with CRAs. CONCLUSIONS: These results support the potential of a new "opioid-sparing" approach for pain treatment, which combines CRAs with reduced doses of morphine.


Assuntos
Relação Dose-Resposta a Droga , Combinação de Medicamentos , Morfina/uso terapêutico , Receptores de Quimiocinas/antagonistas & inibidores , Analgésicos Opioides/farmacologia , Analgésicos Opioides/uso terapêutico , Análise de Variância , Animais , Benzilaminas , Ciclamos , Modelos Animais de Doenças , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/uso terapêutico , Maraviroc/farmacologia , Maraviroc/uso terapêutico , Morfina/farmacologia , Manejo da Dor/métodos , Manejo da Dor/normas , Manejo da Dor/estatística & dados numéricos , Medição da Dor/métodos , Ratos , Ratos Sprague-Dawley , Ferida Cirúrgica/complicações , Ferida Cirúrgica/tratamento farmacológico
18.
Front Immunol ; 10: 2904, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31921165

RESUMO

Research on the effects of opioids on immune responses was stimulated in the 1980s by the intersection of use of intravenous heroin and HIV infection, to determine if opioids were enhancing HIV progression. The majority of experiments administering opioid alkaloids (morphine and heroin) in vivo, or adding these drugs to cell cultures in vitro, showed that they were immunosuppressive. Immunosuppression was reported as down-regulation: of Natural Killer cell activity; of responses of T and B cells to mitogens; of antibody formation in vivo and in vitro; of depression of phagocytic and microbicidal activity of neutrophils and macrophages; of cytokine and chemokine production by macrophages, microglia, and astrocytes; by sensitization to various infections using animal models; and by enhanced replication of HIV in vitro. The specificity of the receptor involved in the immunosuppression was shown to be the mu opioid receptor (MOR) by using pharmacological antagonists and mice genetically deficient in MOR. Beginning with a paper published in 2005, evidence was presented that morphine is immune-stimulating via binding to MD2, a molecule associated with Toll-like Receptor 4 (TLR4), the receptor for bacterial lipopolysaccharide (LPS). This concept was pursued to implicate inflammation as a mechanism for the psychoactive effects of the opioid. This review considers the validity of this hypothesis and concludes that it is hard to sustain. The experiments demonstrating immunosuppression were carried out in vivo in rodent strains with normal levels of TLR4, or involved use of cells taken from animals that were wild-type for expression of TLR4. Since engagement of TLR4 is universally accepted to result in immune activation by up-regulation of NF-κB, if morphine were binding to TLR4, it would be predicted that opioids would have been found to be pro-inflammatory, which they were not. Further, morphine is immunosuppressive in mice with a defective TLR4 receptor. Morphine and morphine withdrawal have been shown to permit leakage of Gram-negative bacteria and LPS from the intestinal lumen. LPS is the major ligand for TLR4. It is proposed that an occult variable in experiments where morphine is being proposed to activate TLR4 is actually underlying sepsis induced by the opioid.


Assuntos
Infecções por HIV/imunologia , HIV-1/imunologia , Leucócitos/imunologia , Morfina/efeitos adversos , Receptores Opioides mu/imunologia , Receptor 4 Toll-Like/imunologia , Citocinas/imunologia , Bactérias Anaeróbias Gram-Negativas/imunologia , Infecções por HIV/patologia , Heroína , Humanos , Leucócitos/patologia , Lipopolissacarídeos/imunologia , Lipopolissacarídeos/toxicidade , Morfina/administração & dosagem , Sepse/imunologia
19.
Front Immunol ; 10: 30, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30761126

RESUMO

Attenuating the innate immunity activation could ameliorate inflammation and disease in settings such as transplant rejection or autoimmunity. Recently, a pivotal role for metabolic re-programming in TLR-induced dendritic cell (DC) activation has emerged. Ethyl pyruvate (EP), a pyruvate derivative, possesses anti-inflammatory properties in vitro and in animal models of disease. However, its effects on DCs remain elusive. We found that EP attenuated LPS-induced activation of murine GM-CSF bone marrow-derived dendritic cells (DCs) in vitro, reducing pro-inflammatory cytokine and IL-10 production, costimulatory molecule and MHC expression, the type I Interferon (IFN-I) response, the LPS-induced cell death, and the ability of DCs to stimulate allogeneic T cells. DC activation induced by TLR7 and TLR9 ligands was also suppressed by EP in vitro. Finally, EP decreased TLR-induced activation stimulated in vivo in conventional DCs and inflammatory monocytes. Investigating EP mechanisms, we found that EP decreased glycolysis and mitochondrial respiration, upon and in absence of TLR stimulation, by reducing ERK, AKT, and nitric oxide (NO) activation. These results indicate that EP inhibits most of the DC biological responses to TLR triggering, altering the metabolic reprogramming necessary for DC activation.


Assuntos
Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Metabolismo Energético , Imunomodulação , Piruvatos/metabolismo , Animais , Sobrevivência Celular/imunologia , Células Cultivadas , Citocinas/metabolismo , Células Dendríticas/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Imunidade Inata , Imunomodulação/efeitos dos fármacos , Lipopolissacarídeos/imunologia , Linfonodos/imunologia , Linfonodos/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Ativação Linfocitária/imunologia , Camundongos , Óxido Nítrico/biossíntese , Proteínas Proto-Oncogênicas c-akt/metabolismo , Piruvatos/farmacologia , Baço/imunologia , Baço/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo
20.
Br J Pharmacol ; 176(17): 3378-3389, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31218677

RESUMO

BACKGROUND AND PURPOSE: Much of the opioid epidemic arose from abuse of prescription opioid drugs. This study sought to determine if the combination of a cannabinoid with an opioid could produce additive or synergistic effects on pain, allowing reduction in the opioid dose needed for maximal analgesia. EXPERIMENTAL APPROACH: Pain was assayed using the formalin test in mice and the carrageenan assay in rats. Morphine and two synthetic cannabinoids were tested: WIN55,212-2 (WIN), which binds to both CB1 and CB2 receptors, and possibly TRPV1 channels; and GP1a, which has activity at CB2 receptors and is reported to inhibit fatty acid amide hydrolase, thus raising levels of endogenous cannabinoids. KEY RESULTS: Morphine in combination with WIN in the formalin test gave synergistic analgesia. Studies with selective antagonists showed that WIN was acting through CB1 receptors. Morphine in combination with GP1a in the formalin test was sub-additive. In the carrageenan test, WIN had no added effect when combined with morphine, but GP1a with morphine showed enhanced analgesia. Both WIN and Gp1a used alone had analgesic activity in the formalin pain test, but not in the carrageenan pain test. CONCLUSIONS AND IMPLICATIONS: The ability of a cannabinoid to produce an additive or synergistic effect on analgesia when combined with morphine varies with the pain assay and may be mediated by CB1 or CB2 receptors. These results hold the promise of using cannabinoids to reduce the dose of opioids for analgesia in certain pain conditions.


Assuntos
Analgésicos Opioides/farmacologia , Canabinoides/farmacologia , Morfina/farmacologia , Dor/tratamento farmacológico , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Animais , Carragenina , Relação Dose-Resposta a Droga , Formaldeído , Masculino , Camundongos , Dor/induzido quimicamente , Dor/metabolismo , Manejo da Dor , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA