Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Immunol ; 208(7): 1772-1781, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35277417

RESUMO

Alternative pathway complement dysregulation with abnormal glomerular C3 deposits and glomerular damage is a key mechanism of pathology in C3 glomerulopathy (C3G). No disease-specific treatments are currently available for C3G. Therapeutics inhibiting complement are emerging as a potential strategy for the treatment of C3G. In this study, we investigated the effects of N-acetylgalactosamine (GalNAc)-conjugated small interfering RNA (siRNA) targeting the C3 component of complement that inhibits liver C3 expression in the C3G model of mice with heterozygous deficiency of factor H (Cfh +/- mice). We showed a duration of action for GalNAc-conjugated C3 siRNA in reducing the liver C3 gene expression in Cfh +/- mice that were dosed s.c. once a month for up to 7 mo. C3 siRNA limited fluid-phase alternative pathway activation, reducing circulating C3 fragmentation and activation of factor B. Treatment with GalNAc-conjugated C3 siRNA reduced glomerular C3d deposits in Cfh +/- mice to levels similar to those of wild-type mice. Ultrastructural analysis further revealed the efficacy of the C3 siRNA in slowing the formation of mesangial and subendothelial electron-dense deposits. The present data indicate that RNA interference-mediated C3 silencing in the liver may be a relevant therapeutic strategy for treating patients with C3G associated with the haploinsufficiency of complement factor H.


Assuntos
Glomerulonefrite Membranoproliferativa , Nefropatias , Animais , Complemento C3/genética , Complemento C3/metabolismo , Fator B do Complemento/metabolismo , Fator H do Complemento/genética , Via Alternativa do Complemento/genética , Glomerulonefrite Membranoproliferativa/patologia , Humanos , Camundongos , RNA Interferente Pequeno/genética
2.
Br J Haematol ; 194(1): 200-210, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33942901

RESUMO

Beta-thalassaemia is an inherited blood disorder characterised by ineffective erythropoiesis and anaemia. Consequently, hepcidin expression is reduced resulting in increased iron absorption and primary iron overload. Hepcidin is under the negative control of transmembrane serine protease 6 (TMPRSS6) via cleavage of haemojuvelin (HJV), a co-receptor for the bone morphogenetic protein (BMP)-mothers against decapentaplegic homologue (SMAD) signalling pathway. Considering the central role of the TMPRSS6/HJV/hepcidin axis in iron homeostasis, the inhibition of TMPRSS6 expression represents a promising therapeutic strategy to increase hepcidin production and ameliorate anaemia and iron overload in ß-thalassaemia. In the present study, we investigated a small interfering RNA (siRNA) conjugate optimised for hepatic targeting of Tmprss6 (SLN124) in ß-thalassaemia mice (Hbbth3/+ ). Two subcutaneous injections of SLN124 (3 mg/kg) were sufficient to normalise hepcidin expression and reduce anaemia. We also observed a significant improvement in erythroid maturation, which was associated with a significant reduction in splenomegaly. Treatment with the iron chelator, deferiprone (DFP), did not impact any of the erythroid parameters. However, the combination of SLN124 with DFP was more effective in reducing hepatic iron overload than either treatment alone. Collectively, we show that the combination therapy can ameliorate several disease symptoms associated with chronic anaemia and iron overload, and therefore represents a promising pharmacological modality for the treatment of ß-thalassaemia and related disorders.


Assuntos
Deferiprona/uso terapêutico , Eritropoese/efeitos dos fármacos , Hepcidinas/biossíntese , Quelantes de Ferro/uso terapêutico , Sobrecarga de Ferro/prevenção & controle , Proteínas de Membrana/antagonistas & inibidores , RNA Interferente Pequeno/uso terapêutico , Talassemia beta/tratamento farmacológico , Acetilgalactosamina/administração & dosagem , Animais , Deferiprona/administração & dosagem , Modelos Animais de Doenças , Quimioterapia Combinada , Feminino , Perfilação da Expressão Gênica , Hepcidinas/genética , Humanos , Ferro/sangue , Quelantes de Ferro/administração & dosagem , Sobrecarga de Ferro/etiologia , Fígado/metabolismo , Magnésio/metabolismo , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Interferência de RNA , RNA Interferente Pequeno/administração & dosagem , Espécies Reativas de Oxigênio , Serina Endopeptidases/genética , Baço/metabolismo , Baço/ultraestrutura , Zinco/metabolismo , Talassemia beta/complicações , Talassemia beta/metabolismo , Talassemia beta/fisiopatologia
3.
Toxicol Sci ; 189(2): 237-249, 2022 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-35737426

RESUMO

SLN360 is a liver-targeted N-acetyl galactosamine (GalNAc)-conjugated small interfering RNA (siRNA) with a promising profile for addressing lipoprotein (a)-related cardiovascular risk. Here, we describe the findings from key preclinical safety studies. In vitro, SLN360 specifically reduced LPA expression in primary human hepatocytes with no relevant off-target effects. In rats, 10 mg/kg subcutaneous SLN360 was distributed specifically to the liver and kidney (peak 126 or 246 mg/g tissue at 6 h, respectively), with <1% of peak liver levels observed in all other tested organs. In vitro, no genotoxicity and no effect on human Ether-a-go-go Related Gene currents or proinflammatory cytokine production was observed, whereas in vivo, no SLN360-specific antibodies were detected in rabbit serum. In rat and nonhuman primate 29-day toxicology studies, SLN360 was well tolerated at all doses. In both species, known GalNAc-conjugated siRNA-induced microscopic changes were observed in the kidney and liver, with small increases in alanine aminotransferase and alkaline phosphatase observed in the high dose rats. Findings were in line with previously described siRNA-GalNAc platform-related effects and all observations were reversible and considered nonadverse. In cynomolgus monkeys, liver LPA messenger RNA and serum lipoprotein (a) were significantly reduced at day 30 and after an 8-week recovery period. No dose-related changes in safety assessment endpoints were noted. No SLN360-induced cytokine production, complement activation, or micronucleus formation was observed in vivo. The toxicological profile of SLN360 presented here is restricted to known GalNAc siRNA effects and no other toxicity associated with SLN360 has been noted. The preclinical profile of SLN360 confirmed suitability for entry into clinical studies.


Assuntos
Acetilgalactosamina , Doenças Cardiovasculares , Acetilgalactosamina/metabolismo , Acetilgalactosamina/toxicidade , Alanina Transaminase , Fosfatase Alcalina , Animais , Citocinas , Éteres , Humanos , Lipoproteína(a) , Macaca fascicularis , RNA Mensageiro , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Coelhos , Ratos
4.
Atherosclerosis ; 349: 240-247, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35400495

RESUMO

BACKGROUND AND AIMS: The LPA gene encodes apolipoprotein (a), a key component of Lp(a), a potent risk factor for cardiovascular disease with no specific pharmacotherapy. Here we describe the pharmacological data for SLN360, a GalNAc-conjugated siRNA targeting LPA, designed to address this unmet medical need. METHODS: SLN360 was tested in vitro for LPA knockdown in primary hepatocytes. Healthy cynomolgus monkeys received single or multiple subcutaneous doses of the SLN360 sequence ranging from 0.1 to 9.0 mg/kg to determine the pharmacokinetic and pharmacodynamic effects. Liver mRNA and serum biomarker analyses were performed. RESULTS: In vitro, the SLN360 sequence potently reduces LPA mRNA in primary cynomolgus and human hepatocytes, while no effect was observed on the expression of APOB or PLG. In vivo, SLN360 exposure peaks 2 h after subcutaneous injection with near full elimination by 24 h. Specific LPA mRNA reduction (up to 91% 2 weeks after dosing) was observed with only the 3 mg/kg group showing appreciable return to baseline (40%). No consistent dose- or time-dependent effect on the expression of APOB, PLG or a panel of sensitive markers of liver lipid accumulation was observed. Potent (up to 95%) and long lasting (≥9 weeks) serum Lp(a) reduction was observed, peaking in all active groups at day 21. The minimally effective dose was determined to be 0.3 mg/kg with an ED50 of 0.6 mg/kg. CONCLUSIONS: SLN360 induces a sustained reduction in serum Lp(a) levels in cynomolgus monkeys following subcutaneous dosing. SLN360 has potential to address the unmet need of Lp(a) reduction in cardiovascular diseases.


Assuntos
Doenças Cardiovasculares , Hiperlipidemias , Apolipoproteínas A , Apolipoproteínas B , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/genética , Humanos , Lipoproteína(a) , RNA Mensageiro , RNA Interferente Pequeno/genética
6.
Clin Cancer Res ; 16(22): 5469-80, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21062934

RESUMO

PURPOSE: Atu027, a novel RNA interference therapeutic, has been shown to inhibit lymph node metastasis in orthotopic prostate cancer mouse models. The aim of this study is to elucidate the pharmacologic activity of Atu027 in inhibiting hematogenous metastasis to the target organ lung in four different preclinical mouse models. EXPERIMENTAL DESIGN: Atu027 compared with vehicle or control small interfering RNA lipoplexes was tested in two experimental lung metastasis models (Lewis lung carcinoma, B16V) and spontaneous metastasis mouse models (MDA-MB-435, MDA-MB-231, mammary fat pad). Different dosing schedules (repeated low volume tail vein injections) were applied to obtain insight into effective Atu027 treatment. Primary tumor growth and lung metastasis were measured, and tissues were analyzed by immunohistochemistry and histology. In vitro studies in human umbilical vein endothelial cells were carried out to provide an insight into molecular changes on depletion of PKN3, in support of efficacy results. RESULTS: Intravenous administration of Atu027 prevents pulmonary metastasis. In particular, formation of spontaneous lung metastasis was significantly inhibited in animals with large tumor grafts as well as in mice with resected primary mammary fat pad tumors. In addition, we provide evidence that an increase in VE-cadherin protein levels as a downstream result of PKN3 target gene inhibition may change endothelial function, resulting in reduced colonization and micrometastasis formation. CONCLUSION: Atu027 can be considered as a potent drug for preventing lung metastasis formation, which might be suitable for preventing hematogenous metastasis in addition to standard cancer therapy.


Assuntos
Carcinoma Pulmonar de Lewis/prevenção & controle , Carcinoma Pulmonar de Lewis/secundário , Modelos Animais de Doenças , Neoplasias Pulmonares/prevenção & controle , Neoplasias Pulmonares/secundário , Interferência de RNA , RNA Interferente Pequeno/uso terapêutico , Animais , Relação Dose-Resposta a Droga , Esquema de Medicação , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/enzimologia , Células Endoteliais/metabolismo , Humanos , Injeções Intravenosas , Camundongos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA