Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Molecules ; 29(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38930902

RESUMO

The current study focused on the design of an extremely sensitive electrochemical sensor of ascorbic acid based on a mixture of NiAl2O4-NiO nanoparticles that, produced in a single step using the sol-gel method, on an ITO electrode. This new sensing platform is useful for the detection of ascorbic acid with a wide range of concentrations extending from the attomolar to the molar. SEM micrographs show the porous structure of the NiAl2O4-NiO sample, with a high specific surface area, which is beneficial for the catalytic performance of the nanocomposite. An XRD diffractogram confirmed the existence of two phases, NiAl2O4 and NiO, both corresponding to the face-centred cubic crystal structure. The performances of the modified electrode, as a biomolecule, in the detection of ascorbic acid was evaluated electrochemically by cyclic voltammetry and chronoamperometry. The sensor exhibited a sensitive electrocatalytic response at a working potential of E = +0.3 V vs. Ag/Ag Cl, reaching a steady-state current within 30 s after each addition of ascorbic acid solution with a wide dynamic range of concentrations extending from attolevels (10-18 M) to molar (10 mM) and limits of detection and quantification of 1.2 × 10-18 M and 3.96 × 10-18 M, respectively. This detection device was tested for the quantification of ascorbic acid in a 500 mg vitamin C commercialized tablet that was not pre-treated.

2.
Anal Chem ; 93(3): 1826-1833, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33370087

RESUMO

Collection of nasopharyngeal samples using swabs followed by the transfer of the virus into a solution and an RNA extraction step to perform reverse transcription polymerase chain reaction (PCR) is the primary method currently used for the diagnosis of COVID-19. However, the need for several reagents and steps and the high cost of PCR hinder its worldwide implementation to contain the outbreak. Here, we report a cotton-tipped electrochemical immunosensor for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus antigen. Unlike the reported approaches, we integrated the sample collection and detection tools into a single platform by coating screen-printed electrodes with absorbing cotton padding. The immunosensor was fabricated by immobilizing the virus nucleocapsid (N) protein on carbon nanofiber-modified screen-printed electrodes which were functionalized by diazonium electrografting. The detection of the virus antigen was achieved via swabbing followed by competitive assay using a fixed amount of N protein antibody in the solution. A square wave voltammetric technique was used for the detection. The limit of detection for our electrochemical biosensor was 0.8 pg/mL for SARS-CoV-2, indicating very good sensitivity for the sensor. The biosensor did not show significant cross-reactivity with other virus antigens such as influenza A and HCoV, indicating high selectivity of the method. Moreover, the biosensor was successfully applied for the detection of the virus antigen in spiked nasal samples showing excellent recovery percentages. Thus, our electrochemical immunosensor is a promising diagnostic tool for the direct rapid detection of the COVID-19 virus that requires no sample transfer or pretreatment.


Assuntos
COVID-19/diagnóstico , Fibra de Algodão , Técnicas Eletroquímicas/métodos , Imunoensaio/métodos , SARS-CoV-2/isolamento & purificação , Anticorpos Antivirais/imunologia , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Carbono/química , Proteínas do Nucleocapsídeo de Coronavírus/química , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Técnicas Eletroquímicas/instrumentação , Eletrodos , Gossypium/química , Humanos , Proteínas Imobilizadas/química , Proteínas Imobilizadas/imunologia , Imunoensaio/instrumentação , Limite de Detecção , Nanofibras/química , Fosfoproteínas/química , Fosfoproteínas/imunologia , SARS-CoV-2/imunologia
3.
Anal Bioanal Chem ; 413(15): 3861-3872, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34021369

RESUMO

Aptamers are short single-stranded oligonucleotides (either DNA or RNA) that can fold into well-defined three-dimensional (3D) spatial structures which enable them to capture their specific target by complementary shape interactions. Aptamers are selected from large random libraries through the SELEX process and only a small fraction of the sequence is involved in direct docking with the target. In this paper, we describe the possible truncation variants of zearalenone (ZEA) aptamer which might be an effective binding region for the target. The originally selected zearalenone (ZEA) aptamer was 80-mer in length and shown to bind the target with a high affinity (Kd = 41 ± 5 nM). Herein, computational docking simulation was performed with 15 truncated variants to determine the predicted binding energy and responsible binding site of the aptamer-analyte complex. The results revealed that 5 truncated variants had binding energy lower than - 7.0 kcal/mol. Circular dichroism analysis was performed on the shortlisted aptamer and the conformational change of aptamers was observed with the presence of an analyte. Aptamer Z3IN (29-mer) was chosen as the most enhanced affinity for its target with a dissociation constant of 11.77 ± 1.44 nM. The aptamer was further applied in the electrochemical aptasensor of ZEA based on an indirect competitive format. The results demonstrated that the truncated aptamer leads to an enhancement of the sensitivity of the biosensor.


Assuntos
Aptâmeros de Nucleotídeos/análise , Técnicas Eletroquímicas/instrumentação , Zearalenona/análise , Aptâmeros de Nucleotídeos/química , Sequência de Bases , Técnicas Biossensoriais/métodos , Dicroísmo Circular , Espectroscopia Dielétrica , Limite de Detecção , Simulação de Acoplamento Molecular
4.
Mikrochim Acta ; 188(6): 199, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34041585

RESUMO

Since the COVID-19 disease caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS- CoV-2) was declared a pandemic, it has spread rapidly, causing one of the most serious outbreaks in the last century. Reliable and rapid diagnostic tests for COVID-19 are crucial to control and manage the outbreak. Here, a label-free square wave voltammetry-based biosensing platform for the detection of SARS-CoV-2 in nasopharyngeal samples is reported. The sensor was constructed on screen-printed carbon electrodes coated with gold nanoparticles. The electrodes were functionalized using 11-mercaptoundecanoic acid (MUA) which was used for the immobilization of an antibody against SARS-CoV-2 nucleocapsid protein (N protein). The binding of the immunosensor with the N protein caused a change in the electrochemical signal. The detection was realised by measuring the change in reduction peak current of a redox couple using square wave voltammetry at 0.04 V versus Ag ref. electrode on the immunosensor upon binding with the N protein. The electrochemical immunosensor showed high sensitivity with a linear range from 1.0 pg.mL-1 to 100 ng.mL-1 and a limit of detection of 0.4 pg.mL-1 for the N protein in PBS buffer pH 7.4. Moreover, the immunosensor did not exhibit significant response with other viruses such as HCoV, MERS-CoV, Flu A and Flu B, indicating the high selectivity of the sensor for SARS-CoV-2. However, cross reactivity of the biosensor with SARS-CoV is indicated, which gives ability of the sensor to detect both SARS-CoV and SARS-CoV-2. The biosensor was successfully applied to detect the SARS-CoV-2 virus in clinical samples showing good correlation between the biosensor response and the RT-PCR cycle threshold values. We believe that the capability of miniaturization, low-cost and fast response of the proposed label-free electrochemical immunosensor will facilitate the point-of-care diagnosis of COVID 19 and help prevent further spread of infection.


Assuntos
Teste para COVID-19/métodos , COVID-19/diagnóstico , Proteínas do Nucleocapsídeo de Coronavírus/análise , Técnicas Eletroquímicas/métodos , Imunoensaio/métodos , SARS-CoV-2/química , Anticorpos Imobilizados/imunologia , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Teste para COVID-19/instrumentação , Carbono/química , Proteínas do Nucleocapsídeo de Coronavírus/imunologia , Técnicas Eletroquímicas/instrumentação , Eletrodos , Ácidos Graxos/química , Ouro/química , Humanos , Imunoensaio/instrumentação , Limite de Detecção , Nanopartículas Metálicas/química , Nasofaringe/virologia , Fosfoproteínas/análise , Fosfoproteínas/imunologia , Compostos de Sulfidrila/química
5.
Analyst ; 145(13): 4606-4614, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32451524

RESUMO

Point-of-care facile and economical detection of Staphylococcus aureus (S. aureus), one of the main causes of food-borne illness, is highly demanded for the early diagnosis and control of infections. Herein, inspired by the proteolytic activity of S. aureus protease on a specific peptide substrate, we developed a rapid, simple and cost-effective biosensor for S. aureus using dual colorimetric and electrochemical detection on the same platform. In this approach, gold screen printed electrodes were used on which specific peptide sequences coupled to magnetic nanoparticles were immobilized giving the black color of the sensor surface. The addition of the S. aureus protease solution on the electrode surface causes cleavage of the peptide sequence and the release of the magnetic nanoparticles revealing the golden colour of the electrode which can be easily seen by the naked eye. Furthermore, square wave voltammetric signals can be detected on the same electrode in the ferro/ferricyanide redox couple. The change in the peak current after peptide cleavage was directly proportional to the concentration of S. aureus. The detection limit of the electrochemical assay was 3 CFU ml-1 after 1 min. Moreover, the biosensor was capable of specifically distinguishing S. aureus from other food- and water-borne bacteria such as E. coli and Listeria using the dual mode colorimetric and electrochemical detection. The biosensor was also tested in spiked milk and water samples showing very good recovery percentages. Thus, we believe that this dual mode biosensing platform enables the easy and accurate determination of S. aureus and holds great promise for point-of-care diagnosis.


Assuntos
Técnicas Biossensoriais/métodos , Colorimetria/métodos , Técnicas Eletroquímicas/métodos , Nanopartículas/química , Staphylococcus aureus/isolamento & purificação , Animais , Técnicas Eletroquímicas/instrumentação , Eletrodos , Contaminação de Alimentos/análise , Ouro/química , Proteínas Imobilizadas/química , Proteínas Imobilizadas/metabolismo , Limite de Detecção , Fenômenos Magnéticos , Metaloendopeptidases/metabolismo , Leite/química , Oligopeptídeos/química , Staphylococcus aureus/enzimologia , Staphylococcus aureus/metabolismo , Microbiologia da Água
6.
Mikrochim Acta ; 187(9): 486, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32761391

RESUMO

A novel electrochemical biosensor is reported for simultaneous detection of two of the most common food-borne pathogens: Listeria monocytogenes and Staphylococcus aureus. The biosensor is composed of an array of gold nanoparticles-modified screen-printed carbon electrodes on which magnetic nanoparticles coupled to specific peptides were immobilized via streptavidin-biotin interaction. Taking advantage of the proteolytic activities of the protease enzymes produced from the two bacteria on the specific peptides, the detection was achieved in 1 min. The detection was realized by measuring the percentage increase of the square wave voltammetric peak current at 0.1 V versus a Ag/AgCl reference electrode in ferro/ferricyanide redox couple after incubation with the bacteria protease. The integration of the specificity of the bacterial enzymes towards their peptide substrates with the sensitivity of the electrochemical detection on the sensor array allows the rapid, sensitive and selective quantification of the two bacteria. Outstanding sensitivities were achieved using this biosensor array platform with limit of detection of 9 CFU mL-1 for Listeria monocytogenes and 3 CFU mL-1 for Staphylococcus aureus. The multiplexing capability and selectivity of the array voltammetric biosensor were demonstrated by analysing samples of Staphylococcus aureus, Listeria monocytogenes or E. coli and also containing a mixture of two or three bacteria. Using this biosensor, the two bacteria were successfully quantified simultaneously in one step without the need for DNA extraction or amplification techniques. This platform offers promise for rapid, simple and cost-effective simultaneous detection of various bacteria. Graphical abstract.


Assuntos
Proteínas de Bactérias/análise , Técnicas Biossensoriais/métodos , Listeria monocytogenes/isolamento & purificação , Peptídeo Hidrolases/análise , Peptídeos/química , Staphylococcus aureus/isolamento & purificação , Proteínas de Bactérias/química , Técnicas Biossensoriais/instrumentação , Carbono/química , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Eletrodos , Ouro/química , Proteínas Imobilizadas/química , Limite de Detecção , Listeria monocytogenes/enzimologia , Fenômenos Magnéticos , Nanopartículas Metálicas/química , Peptídeo Hidrolases/química , Proteólise , Staphylococcus aureus/enzimologia
7.
Mikrochim Acta ; 187(5): 266, 2020 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-32279134

RESUMO

An electrochemical aptasensor is described for determination of the phytohormone of zearalenone (ZEA). The gold electrode was modified with ZEA via covalent attachment using cysteamine-hydrochloride and 1,4-phenylene diisocyanate linker. A truncated ZEA aptamer with a dissociation constant of 13.4 ± 2.1 nM was used in an aptasensor. The electrochemical property was investigated using square wave voltammetry for monitoring the change in the electron transfer using the ferro/ferricyanide system as redox probe. Under optimal experimental conditions, the response was best measured at a potential of 0.20 V (vs. Ag/AgCl). The signals depended on the competitive mechanism between the immobilised ZEA and free ZEA for the aptamer binding site. The aptasensor works in the range 0.01 to 1000 ng·mL-1 ZEA concentration, with a detection limit of 0.017 ng·mL-1. High degree of cross-reactivity with the other analogues of ZEA was observed, whereas none towards other mycotoxins. The aptasensor was further applied for the determination of ZEA in the extract of maize grain and showed good recovery percentages between 87 and 110%. Graphical abstract Schematic representation of the electrochemical determination of zearalenone based on indirect competitive assay. Step a Immobilisation of ZEA on the surface of gold electrode via covalent attachment, b competition for the ZEA aptamer binding site between immobilised and free ZEA, and c current signal of the binding event based on SWV technique.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Micotoxinas/análise , Zearalenona/análise , Sequência de Bases , Técnicas Eletroquímicas/instrumentação , Eletrodos , Contaminação de Alimentos/análise , Ouro/química , Ácidos Nucleicos Imobilizados/química , Limite de Detecção , Micotoxinas/química , Zea mays/química , Zearalenona/química
8.
Mikrochim Acta ; 186(4): 224, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30847572

RESUMO

The Middle East respiratory syndrome corona virus (MERS-CoV) is highly pathogenic. An immunosensor for the determination of MERS-CoV is described here. It is based on a competitive assay carried out on an array of carbon electrodes (DEP) modified with gold nanoparticles. Recombinant spike protein S1 was used as a biomarker for MERS CoV. The electrode array enables multiplexed detection of different CoVs. The biosensor is based on indirect competition between free virus in the sample and immobilized MERS-CoV protein for a fixed concentration of antibody added to the sample. Voltammetric response is detected by monitoring the change in the peak current (typically acquired at a working potential of -0.05 V vs. Ag/AgCl) after addition of different concentrations of antigen against MERS-CoV. Electrochemical measurements using ferrocyanide/ferricyanide as a probe were recorded using square wave voltammetry (SWV). Good linear response between the sensor response and the concentrations from 0.001 to 100 ng.mL-1 and 0.01 to 10,000 ng.mL-1 were observed for MERS-CoV and HCoV, respectively. The assay was performed in 20 min with detection limit as low as 0.4 and 1.0 pg.mL-1 for HCoV and MERS-CoV, respectively. The method is highly selective over non-specific proteins such as Influenza A and B. The method is single-step, sensitive and accurate. It was successfully applied to spiked nasal samples. Graphical abstract An electrochemical immunoassay is described for the Middle East Respiratory Syndrome Corona Virus (MERS-CoV). The method is based on a competitive assay carried out on a carbon array electrodes (DEP) nanostructured with gold nanoparticles. The array electrodes enable the multiplexed detection of different types of Corona Virus.


Assuntos
Infecções por Coronavirus/diagnóstico , Ouro/química , Nanopartículas Metálicas/química , Coronavírus da Síndrome Respiratória do Oriente Médio/química , Anticorpos Antivirais/metabolismo , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Eletrodos , Ferrocianetos/química , Imunoensaio/métodos , Limite de Detecção , Oxirredução , Tamanho da Partícula , Sensibilidade e Especificidade , Propriedades de Superfície
9.
Mikrochim Acta ; 186(8): 523, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31292788

RESUMO

Heroin, marijuana and cocaine are widely abused drugs. Their use can be readily detected by analyzing urine for the metabolites morphine (MOR), tetrahydrocannabinol (THC) or benzoylecgonine (BZC). A multiplex immunosensor is described here for detection of MOR, THC and BZC using screen printed carbon array electrodes modified with gold nanoparticles. Antibodies against MOR, THC and BZC were immobilized on eight electrodes in a sensor array simultaneously, and a competitive assay was used for the detection. The free analytes in the sample compete with bovine serum albumin-conjugated analytes for the immobilized antibodies on the sensor surface. The array is capable of detecting the three drugs simultaneously within 20-40 min. The method has a high sensitivity, with detection limits as low as 1.2, 7.0, and 8.0 pg.mL-1 for MOR, THC and BZC, respectively. Cross reactivity testing was preformed to monitor any nonspecific binding. The results revealed good selectivity. Urine samples were spiked with the 3 drugs and tested with the multiplexed immunosensor. Recovery percentages ranged between 88 to 115%. Graphical abstract Schematic presentation of the multiplexed immunosensor for drugs of abuse,viz. tetrahydrocannabinol (THC), morphine (MOR), and benzoylecgonine (BZC)) by using an array of modified electrodes.


Assuntos
Cocaína/análogos & derivados , Dronabinol/urina , Drogas Ilícitas/urina , Morfina/urina , Anticorpos/química , Anticorpos/imunologia , Cocaína/imunologia , Cocaína/urina , Dronabinol/imunologia , Técnicas Eletroquímicas , Ouro/química , Humanos , Proteínas Imobilizadas/química , Proteínas Imobilizadas/imunologia , Imunoensaio , Limite de Detecção , Nanopartículas Metálicas/química , Morfina/imunologia , Detecção do Abuso de Substâncias
10.
Mikrochim Acta ; 186(12): 828, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31754797

RESUMO

The autosomal recessive-hyper immunoglobulin E syndromes (AR-HIES) are inherited inborn primary immunodeficiency disorders caused mainly by mutations in the dedicator of cytokinesis 8 (DOCK8) gene. A method is described for the selection of DNA aptamers against DOCK8 protein. The selection was performed by using a gold electrode as the solid matrix for immobilization of DOCK8. This enables voltammetric monitoring of the bound DNA after each selection cycle. After eight rounds of selection, high affinity DNA aptamers for DOCK8 were identified with dissociation constants (Kds) ranging from 3.3 to 66 nM. The aptamer which a Kd of 8.8 nM was used in an aptasensor. A gold electrode was modified by self-assembly of the thiolated aptamer, and the response to the DOCK8 protein was detected by monitoring the change in the electron transfer resistance using the ferro/ferricyanide system as a redox probe. The aptasensor works in the 100 pg.mL-1 to 100 ng.mL-1 DOCK8 concentration range, has a detection limit of 81 pg.mL-1 and good selectivity over other proteins in the serum. Graphical abstractSchematic representation of an electrochemical screening protocol for the selection of DNA aptamer against dedicator of cytokinesis 8 protein using electrode as solid support for target immobilization.


Assuntos
Aptâmeros de Nucleotídeos/química , Fatores de Troca do Nucleotídeo Guanina/análise , Proteínas Imobilizadas/análise , Técnicas Biossensoriais , Espectroscopia Dielétrica , Dimerização , Técnicas Eletroquímicas/métodos , Eletrodos , Ferricianetos/química , Ouro/química , Limite de Detecção , Oxirredução , Técnica de Seleção de Aptâmeros/métodos , Sensibilidade e Especificidade , Compostos de Sulfidrila/química , Propriedades de Superfície
11.
Mikrochim Acta ; 185(5): 256, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29675559

RESUMO

The authors describe the identification of an effective binding region of aptamers against glycated (HbA1c) and total haemoglobin (tHb) by using a fluorometric assay. Truncation of the originally selected aptamers from 60 to 46 and 34 nucleotides for HbA1c and tHb, respectively, enhances the affinity for their targets. Moreover, shortening the aptamer sequences leads to a better conformational change after target binding which enabled the integration of the aptamers in a graphene oxide (GO)-based fluorometric assay. First, fluorescein-labelled truncated aptamers were physically absorbed onto the surface of GO surface via π-stacking interaction. This leads to quenching of fluorescence. Once the truncated aptamers bind the target protein, a conformational change is induced which results (a) )in the release of the aptamers from the surface of GO and (b) in the restoration of green fluorescence that is measured at 515 nm. The assay can be carried out in a microtiter plate format in homogeneous solution, this avoiding the steps of immobilization, incubation, and washing that are often necessary in immunoassays. This also reduces the time and the costs of the overall assay and allows for high throughput screening for diabetes. HbA1c can be detected in the range from 5.4 to 10.6%. The assay is selective for HbA1c over other proteins that commonly exist in blood. The results obtained by using this method compare well with those of a turbidimetric immunoassay that is typically applied in clinical laboratories. Graphical abstract Truncated aptamers for total and glycated hemoglobin were selected and integrated into a graphene oxide-based fluorescence detection assay for high-throughput screening for diabetes.


Assuntos
Aptâmeros de Nucleotídeos/química , Diabetes Mellitus/diagnóstico , Hemoglobinas Glicadas/análise , Grafite/química , Óxidos/química , Sequência de Bases , Técnicas Biossensoriais/métodos , Fluorescência , Hemoglobinas Glicadas/química , Humanos , Espectrometria de Fluorescência
12.
Mikrochim Acta ; 185(3): 164, 2018 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-29594804

RESUMO

The work describes a simple cotton swab-based colorimetric immunoassay as a rapid screening tool for pathogenic bacteria on poultry processing plants. This immunosensing platform can be used for the detection of pathogens present on surfaces such as glass, stainless steel and chicken meat. Unlike the reported assays, here, cotton swab plays dual function: as a sample collector from the solid surfaces and as detection platform. The immunoassay was tested for the detection of 4 different bacteria; Salmonella typhimurium, Salmonella enteritidis, Staphylococcus aureus and Campylobacter jejuni. The immunoassays were fabricated by immobilizing specific antibody for each bacterium on a cotton swab that is used to recover the cells from contaminated surfaces. Then, a sandwich immunoassay was developed by immersing the cotton swab in different colored nanobead-conjugated antibody solutions which corresponds to different bacteria. The immunoassays response was detected colorimetrically by following the change in the color intensity produced by the nanobeads due to the specific binding on the cotton swab. This simple colorimetric assay is very sensitive with a detection limit of 10 cfu.mL-1. Furthermore, no significant cross reactivity of the immunoassays with non specific bacteria was observed indicating good selectivity of the immunoassays. This simple, disposable and easy-to- use colorimetric platform shows great promise as rapid qualitative and semi quantitative detection tool for microorganisms on food processing plants and other surfaces. Graphical abstract Schematic of the sandwich colorimetric immunosensor for the detection of pathogenic bacteria on poultry processing plants using cotton swabs and nanobeads.


Assuntos
Contaminação de Alimentos/análise , Bactérias Gram-Negativas/isolamento & purificação , Imunoensaio/métodos , Aves Domésticas/microbiologia , Animais , Galinhas/microbiologia , Colorimetria/instrumentação , Colorimetria/métodos , Microbiologia de Alimentos/instrumentação , Microbiologia de Alimentos/métodos , Bactérias Gram-Negativas/imunologia , Imunoensaio/instrumentação , Limite de Detecção
13.
Anal Chem ; 89(5): 3138-3145, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28264568

RESUMO

This article reports a novel aptamer-based impedimetric detection of carbendazim, a commonly used benzimidazole fungicide in agriculture. High affinity and specificity DNA aptamers against carbendazim were successfully selected using systematic evolution of ligand by exponential enrichment (SELEX). The dissociation constants (Kds) of the selected DNA aptamers after 10 in vitro selection cycles were characterized using fluorescence-based assays showing values in the nanomolar range. The aptamer which showed the highest degree of affinity and conformation change was used to fabricate an electrochemical aptasensor via self-assembly of thiol-modified aptamer on gold electrodes. The aptasensor exploits the specific recognition of carbendazim by the aptamer immobilized on the gold surface which leads to conformational changes in the aptamer structure. This conformational change alters the access of a ferrocyanide/ferricyanide redox couple to the aptasensor surface. The aptasensor response is thus measured by following the increase in the electron transfer resistance of the redox couple using Faradaic electrochemical impedance spectroscopy. This method allowed a selective and sensitive label-free detection of carbendazim within a range of 10 pg/mL-10 ng/mL with a limit of detection of 8.2 pg/mL. The aptasensor did not show cross reactivity with other commonly used pesticides such as fenamiphos, isoproturon, atrazine, linuron, thiamethoxam, trifluralin, carbaryl, and methyl parathion. Moreover, the aptasensor has been applied in different spiked food matrixes showing high recovery percentages. We believe that the proposed aptasensor is a promising alternative to the currently used methods for carbendazim monitoring.


Assuntos
Aptâmeros de Nucleotídeos/química , Benzimidazóis/análise , Técnicas Biossensoriais/métodos , Carbamatos/análise , Técnicas Eletroquímicas , Bebidas/análise , Espectroscopia Dielétrica , Ferrocianetos/química , Análise de Alimentos , Ouro/química , Limite de Detecção , Oxirredução , Praguicidas/química , Técnica de Seleção de Aptâmeros
14.
Anal Biochem ; 525: 78-84, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28237255

RESUMO

Aptamers have shown a number of potential applications in sensing and therapeutic due to the high affinity and specificity towards their target molecules. Not all the nucleotides in the full length aptamers are involved in the binding with their targets. The non-binding domain of the aptamer may affect the binding affinity of the aptamer-target complex. Mapping the aptamer binding region could increase the affinity and the specificity. In this paper, we designed aptamer-based fluorescence sensors from a truncated progesterone (P4) aptamer. Then, fluorescein and quencher labelled aptamer complementary oligonucleotide sequences were hybridized to the truncated aptamer at different sites to form duplex structures. We used fluorescence-quencher pair displacement assay upon progesterone binding for the determination of P4. One of the truncated sequences has shown high binding affinity with 16 fold increase in the dissociation constant, Kd (2.1 nM) compared to the original aptamer. The aptasensor was highly selective for P4 against similar compounds such as 17-ß estradiol, bisphenol-A and vitamin D. The sensor has been applied for the detection of P4 in spiked tap water and in urine samples showing good recovery. This new developed aptamer-based fluorescence biosensor can be applied in food, pharmaceutical, and clinical industries.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Sondas de DNA/química , Fluorescência , Progesterona/análise , Urina/química , Água/química , Humanos , Urinálise
15.
Mikrochim Acta ; 185(1): 61, 2017 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-29594712

RESUMO

The work describes a fluorescence-based study for mapping the highest affinity truncated aptamer from the full length sequence and its integration in a graphene oxide platform for the detection of Salmonella enteriditis. To identify the best truncated sequence, molecular beacons and a displacement assay design are applied. In the fluorescence displacement assay, the truncated aptamer was hybridized with fluorescein and quencher-labeled complementary sequences to form a fluorescence/quencher pair. In the presence of S. enteritidis, the aptamer dissociates from the complementary labeled oligonucleotides and thus, the fluorescein/quencher pair becomes physically separated. This leads to an increase in fluorescence intensity. One of the truncated aptamers identified has a 2-fold lower dissociation constant (3.2 nM) compared to its full length aptamer (6.3 nM). The truncated aptamer selected in this process was used to develop a fluorometric graphene oxide (GO) based assay. If fluorescein-labeled aptamer is adsorbed on GO via π stacking interaction, fluorescence is quenched. However, in the presence of target (S. enteriditis), the labeled aptamers is released from surface to form a stable complex with the bacteria and fluorescence is restored, depending on the quantity of bacteria being present. The resulting assay has an unsurpassed detection limit of 25 cfu·mL-1 in the best case. The cross reactivity to Salmonella typhimurium, Staphylococcus aureus and Escherichia coli is negligible. The assay was applied to analyze doped milk samples for and gave good recovery. Thus, we believe that the truncated aptamer/graphene oxide platform is a potential tool for the detection of S. Enteritidis. Graphical abstract Fluorescently labelled aptamer against Salmonella enteritidis was adsorbed on the surface of graphene oxide by π-stacking interaction. This results in quenching of the fluorescence of the label. Addition of Salmonella enteritidis restores fluorescence, and this effect is used for quantification of this food-borne pathogen.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , Técnicas Biossensoriais/métodos , Fluorometria/métodos , Grafite/química , Limite de Detecção , Óxidos/química , Salmonella enteritidis/isolamento & purificação , Animais , Aptâmeros de Nucleotídeos/genética , Sequência de Bases , Leite/microbiologia , Salmonella enteritidis/metabolismo
16.
Anal Chem ; 87(2): 1075-82, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25486123

RESUMO

Rising progesterone (P4) levels in humans due to its overconsumption through hormonal therapy, food products, or drinking water can lead to many negative health effects. Thus, the simple and accurate assessment of P4 in both environmental and clinical samples is highly important to protect public health. In this work, we present the selection, identification, and characterization of ssDNA aptamers with high binding affinity to P4. The aptamers were selected in vitro from a single-stranded DNA library of 1.8 × 10(15) oligonucleotides showing dissociation constants (KD) in the low nanomolar range. The dissociation constant of the best aptamer, designated as P4G13, was estimated to be 17 nM by electrochemical impedance spectroscopy (EIS) as well as fluorometric assay. Moreover, the aptamer P4G13 did not show cross-reactivity to analogues similar to progesterone such as 17ß-estradiol (E2) and norethisterone (NET). An impedimetric aptasensor for progesterone was then fabricated based on the conformational change of P4G13 aptamer, immobilized on the gold electrode by self-assembly, upon binding to P4, which results in an increase in electron transfer resistance. Aptamer-complementary DNA (cDNA) oligonucleotides were tested to maximize the signal gain of the aptasensor after binding with progesterone. Significant signal enhancement was observed when the aptamer hybridized with a short complementary sequence at specific site was used instead of pure aptamer. This signal gain is likely due to the more significant conformational change of the aptamer-cDNA than the pure aptamer upon binding with P4, as confirmed by circular dichroism (CD) spectroscopy. The developed aptasensor exhibited a linear range for concentrations of P4 from 10 to 60 ng/mL with a detection limit of 0.90 ng/mL. Moreover, the aptasensor was applied in spiked tap water samples and showed good recovery percentages. The new selected progesterone aptamers can be exploited in further biosensing applications for environmental, clinical, and medical diagnostic purposes.


Assuntos
Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , DNA de Cadeia Simples/química , Espectroscopia Dielétrica/métodos , Estradiol/análise , Progesterona/análise , Aptâmeros de Nucleotídeos/metabolismo , Primers do DNA/química , DNA de Cadeia Simples/metabolismo , Eletrodos , Estradiol/metabolismo , Humanos , Limite de Detecção , Progesterona/metabolismo
17.
Anal Chem ; 86(15): 7551-7, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25011536

RESUMO

The development of successful biosensing platforms is highly dependent upon the biorecognition properties of the recognition receptor and the sensitivity of the transducer of the binding signal. The integration of the high affinity and specificity of DNA aptamers with the unique properties of the carbon nanomaterial graphene offers an excellent avenue for sensitive and selective biosensing architectures. In this work, a highly sensitive and selective aptasensor which utilizes an unlabeled DNA aptamer assembled on a graphene electrode for microcystin-LR detection was developed. A facile strategy was used for the aptasensor fabrication on the basis of the noncovalent assembly of DNA aptamer on graphene-modified screen printed carbon electrodes. Assembly of the DNA aptamer on the graphene-modified electrodes caused a marked drop in the square wave voltammetric reduction signal of the [Fe(CN)6](4-/3-) redox couple. The presence of microcystin-LR, on the other hand, caused a dose-responsive increase in peak current, allowing the quantification of microcystin-LR through the measurement of peak current change. Under optimal conditions, the detection limit of the developed aptasensor was 1.9 pM in buffer, a concentration much lower than those offered by previously reported biosensors for microcystin-LR. The developed aptasensor also exhibited excellent selectivity for microcystin-LR with no detectable cross-reactivity to okadaic acid, microcystin-LA, and microcystin-YR. Moreover, the proposed aptasensor has been applied for the analysis of spiked tap water and fish samples showing good recovery percentages. This novel, simple, high-performance, and low-cost detection platform would facilitate the routine monitoring of microcystin-LR in real samples.


Assuntos
Aptâmeros de Nucleotídeos/química , Eletrodos , Grafite/química , Microcistinas/análise , Animais , Sequência de Bases , Primers do DNA , Peixes , Limite de Detecção , Toxinas Marinhas , Poluentes Químicos da Água/análise
18.
Talanta ; 270: 125549, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38157735

RESUMO

Pepsinogen I (PG I) is a biomarker that plays a crucial role in the diagnosis of gastric cancer. The development of biosensor to monitor PG I overexpression in serum is crucial for early gastric cancer diagnosis, offering a less invasive alternative to the costly and uncomfortable gastroscopy procedure. This study presents a cost-efficient, scalable and disposable label-free biosensing strategy for detecting PG I, utilizing a redox-active polymelamine electrodeposited on a reduced graphene oxide screen-printed electrode surface (PM-rGO/SPE). Under optimized conditions, the conducting polymer PM was deposited on the rGO/SPE via a potentiodynamic method. The structural and morphological features of PM-rGO/SPE were analyzed with the assistance of Raman and Scanning Electron Microscopy analysis. Specific monoclonal anti-PG I antibodies were immobilized on the in situ prepared redox-active layer via EDC/NHS chemistry to develop a novel electrochemical immunosensor. Unlike the traditional immunosensing strategies which utilizes external redox probe solution for measuring the signal, the developed configuration allowed for redox-probe free monitoring of current changes of the redox active PM resulting from the formation of the immunocomplex on the electrode surface. Utilizing this method, PG I detection spanned a clinically relevant concentration range of 0.01-200 ng/mL, with a low limit of detection at 9.1 pg/mL. The electrochemical immunosensor demonstrated specificity against other biomarkers such as PDCD1, ErBb2, and CD28 with negligible interference. The immunosensor exhibited excellent recovery capabilities for PG I detection in serum samples. These findings underscore the potential of the PM-rGO/SPE immunosensor as a point-of-care diagnostic tool for gastric cancer.


Assuntos
Técnicas Biossensoriais , Grafite , Neoplasias Gástricas , Triazinas , Humanos , Neoplasias Gástricas/diagnóstico , Técnicas Biossensoriais/métodos , Sistemas Automatizados de Assistência Junto ao Leito , Imunoensaio , Grafite/química , Oxirredução , Técnicas Eletroquímicas/métodos , Limite de Detecção , Eletrodos
19.
Biosens Bioelectron ; 259: 116388, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38761744

RESUMO

Claudin18.2 (CLDN18.2) is a tight junction protein often overexpressed in various solid tumors, including gastrointestinal and esophageal cancers, serving as a promising target and potential biomarker for tumor diagnosis, treatment assessment, and prognosis. Despite its significance, no biosensor has been reported to date for the detection of CLDN18.2. Here, we present the inaugural immunosensor for CLDN18.2. In this study, an amine-rich conducting polymer of polymelamine (PM) was electrografted onto different carbon nanomaterial-based screen-printed electrodes (SPEs), including carbon (C), graphene (Gr), graphene oxide (GO), carbon nanotube (CNT), and carbon nanofiber (CNF) via cyclic voltammetry. A comparative study was performed to explore the best material for the preparation of the PM-modified electrodes to be used as in-situ redox substrate for the immunosensor fabrication. The surface chemistry and structural features of pristine and PM-deposited electrodes were analyzed using Raman and scanning electron microscopy (SEM) techniques. Our results showed that the PM deposited on Gr and CNT/SPEs exhibited the most significant and stable redox behavior in PBS buffer. The terminal amine moieties on the PM-modified electrode surfaces were utilized for immobilizing anti-CLDN18.2 monoclonal antibodies via N-ethyl-N'-(3-(dimethylamino)propyl)carbodiimide/N-hydroxysuccinimide chemistry to construct the electrochemical immunosensor platform. Differential pulse voltammetry-based immunosensing of CLDN18.2 protein on BSA/anti-CLDN18.2/PM-Gr/SPE and BSA/anti-CLDN18.2/PM-CNT/SPE exhibited excellent selectivity against other proteins such as CD1, PDCD1, and ErBb2. The limits of detection of these two immunosensor platforms were calculated to be 7.9 pg/mL and 0.104 ng/mL for the CNT and Gr immunosensors, respectively. This study demonstrated that the PM-modified Gr and CNT electrodes offer promising platforms not only for the reagentless signaling but also for covalent immobilization of biomolecules. Moreover, these platforms offer excellent sensitivity and selectivity for the detection of CLDN18.2 due to its enhanced stable redox activity. The immunosensor demonstrated promising results for the sensitive detection of CLDN18.2 in biological samples, addressing the critical need for early gastric cancer diagnosis.


Assuntos
Anticorpos Imobilizados , Técnicas Biossensoriais , Claudinas , Técnicas Eletroquímicas , Eletrodos , Grafite , Nanotubos de Carbono , Técnicas Biossensoriais/métodos , Humanos , Técnicas Eletroquímicas/métodos , Nanotubos de Carbono/química , Imunoensaio/métodos , Anticorpos Imobilizados/química , Grafite/química , Limite de Detecção , Carbono/química , Nanoestruturas/química
20.
Talanta ; 275: 126190, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38703483

RESUMO

Neonicotinoids, sometimes abbreviated as neonics, represent a class of neuro-active insecticides with chemical similarities to nicotine. Neonicotinoids are the most widely adopted group of insecticides globally since their discovery in the late 1980s. Their physiochemical properties surpass those of previously established insecticides, contributing to their popularity in various sectors such as agriculture and wood treatment. The environmental impact of neonicotinoids, often overlooked, underscores the urgency to develop tools for their detection and understanding of their behavior. Conventional methods for pesticide detection have limitations. Chromatographic techniques are sensitive but expensive, generate waste, and require complex sample preparation. Bioassays lack specificity and accuracy, making them suitable as preliminary tests in conjunction with instrumental methods. Aptamer-based biosensor is recognized as an advantageous tool for neonicotinoids detection due to its rapid response, user-friendly nature, cost-effectiveness, and suitability for on-site detection. This comprehensive review represents the inaugural in-depth analysis of advancements in aptamer-based biosensors targeting neonicotinoids such as imidacloprid, thiamethoxam, clothianidin, acetamiprid, thiacloprid, nitenpyram, and dinotefuran. Additionally, the review offers valuable insights into the critical challenges requiring prompt attention for the successful transition from research to practical field applications.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Inseticidas , Neonicotinoides , Inseticidas/análise , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Neonicotinoides/análise , Guanidinas/análise , Guanidinas/química , Tiametoxam/análise , Tiazóis/análise , Tiazóis/química , Nitrocompostos/análise , Monitoramento Ambiental/métodos , Poluentes Ambientais/análise , Tiazinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA