RESUMO
Mycobacterium smegmatis Lhr exemplifies a novel clade of helicases composed of an N-terminal ATPase/helicase domain (Lhr-Core) and a large C-terminal domain (Lhr-CTD) that nucleates a unique homo-tetrameric quaternary structure. Expression of Lhr, and its operonic neighbor Nei2, is induced in mycobacteria exposed to mitomycin C (MMC). Here we report that lhr deletion sensitizes M. smegmatis to killing by DNA crosslinkers MMC and cisplatin but not to killing by monoadduct-forming alkylating agent methyl methanesulfonate or UV irradiation. Testing complementation of MMC and cisplatin sensitivity by expression of Lhr mutants in Δlhr cells established that: (i) Lhr-CTD is essential for DNA repair activity, such that Lhr-Core does not suffice; (ii) ATPase-defective mutant D170A/E171A fails to complement; (iii) ATPase-active, helicase-defective mutant W597A fails to complement and (iv) alanine mutations at the CTD-CTD interface that interdict homo-tetramer formation result in failure to complement. Our results instate Lhr's ATP-driven motor as an agent of inter-strand crosslink repair in vivo, contingent on Lhr's tetrameric quaternary structure. We characterize M. smegmatis Nei2 as a monomeric enzyme with AP ß-lyase activity on single-stranded DNA. Counter to previous reports, we find Nei2 is inactive as a lyase at a THF abasic site and has feeble uracil glycosylase activity.
Assuntos
Mitomicina , Mycobacterium , Mitomicina/farmacologia , Cisplatino/farmacologia , Proteínas de Bactérias/metabolismo , DNA Helicases/metabolismo , Mycobacterium/genética , Adenosina Trifosfatases/metabolismo , Reparo do DNA/genética , DNA de Cadeia SimplesRESUMO
Thymus linearis (Thyme) is a medicinal plant widely distributed throughout Asia. Various parts of thyme are utilized for diverse medicinal purposes, including its use as a tonic and diuretic, for cough relief, as a flavoring agent, in treating dysentery, and for alleviating stomach disorders. Numerous studies have been conducted to explore the unexploited potential of thyme. Thyme was collected from the northern region of Pakistan, and sun-mediated extraction was conducted. Phytochemical analysis, utilizing GC-MS, revealed numerous bioactive phytochemical constituents with disease-preventing roles, including detoxifying agents, antioxidants, anticancer compounds, dietary fiber, neuropharmacological agents, and immunity-potentiating agents, in the methanolic and ethanolic (14 days) extracts of the flower, leaf, and stem. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) assay results indicated that the ethanolic and methanolic extracts of the stem exhibited the highest antioxidant activity, reaching up to 67.34% and 62.73%, respectively, while the values for the flower and leaf extracts (both methanol and ethanol) were around 60%. The IC50 (half maximal inhibitory concentration) values were also calculated for all the samples, ranging between 7 and 9 µg/mL. Positive antibacterial and antifungal effects against Bacillus subtilis and Escherichia coli, as well as Aspergillus niger (fungi), were observed only in the extracts of the flower (both methanol and ethanol). The sun-mediated technique was used for extraction for the first time in this study. Therefore, this study introduces a novel approach to the extraction of bioactive compounds from medicinal plants, ultimately contributing to the development of herbal drugs with more convenient and cost-effective methods.
Assuntos
Plantas Medicinais , Thymus (Planta) , Antioxidantes/farmacologia , Antioxidantes/química , Metanol/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Thymus (Planta)/química , Antibacterianos/farmacologia , Antibacterianos/química , Plantas Medicinais/química , Compostos Fitoquímicos/farmacologia , EtanolRESUMO
Pseudomonas putida MPE exemplifies a novel clade of manganese-dependent single-strand DNA endonuclease within the binuclear metallophosphoesterase superfamily. MPE is encoded within a widely conserved DNA repair operon. Via structure-guided mutagenesis, we identify His113 and His81 as essential for DNA nuclease activity, albeit inessential for hydrolysis of bis-p-nitrophenylphosphate. We propose that His113 contacts the scissile phosphodiester and serves as a general acid catalyst to expel the OH leaving group of the product strand. We find that MPE cleaves the 3' and 5' single-strands of tailed duplex DNAs and that MPE can sense and incise duplexes at sites of short mismatch bulges and opposite a nick. We show that MPE is an ambidextrous phosphodiesterase capable of hydrolyzing the ssDNA backbone in either orientation to generate a mixture of 3'-OH and 3'-PO4 cleavage products. The directionality of phosphodiester hydrolysis is dictated by the orientation of the water nucleophile vis-à-vis the OH leaving group, which must be near apical for the reaction to proceed. We propose that the MPE active site and metal-bound water nucleophile are invariant and the enzyme can bind the ssDNA productively in opposite orientations.
Assuntos
Proteínas de Bactérias/metabolismo , Enzimas Reparadoras do DNA/metabolismo , DNA de Cadeia Simples/metabolismo , Desoxirribonuclease I/metabolismo , Pseudomonas putida/enzimologia , Proteínas de Bactérias/química , Pareamento de Bases , Domínio Catalítico , Reparo de Erro de Pareamento de DNA , Reparo do DNA , Enzimas Reparadoras do DNA/química , Desoxirribonuclease I/química , Histidina/química , Hidrólise , Manganês/química , Modelos Moleculares , Nitrofenóis/metabolismo , Fosfatos/química , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , ÁguaRESUMO
A recently identified and widely prevalent prokaryal gene cluster encodes a suite of enzymes with imputed roles in nucleic acid repair. The enzymes are as follows: MPE, a DNA endonuclease; Lhr-Core, a 3'-5' DNA helicase; LIG, an ATP-dependent DNA ligase; and Exo, a metallo-ß-lactamase-family nuclease. Bacterial and archaeal MPE proteins belong to the binuclear metallophosphoesterase superfamily that includes the well-studied DNA repair nucleases Mre11 and SbcD. Here, we report that the Pseudomonas putida MPE protein is a manganese-dependent DNA endonuclease that incises either linear single strands or the single-strand loops of stem-loop DNA structures. MPE has feeble activity on duplex DNA. A crystal structure of MPE at 2.2 Å resolution revealed that the active site includes two octahedrally coordinated manganese ions. Seven signature amino acids of the binuclear metallophosphoesterase superfamily serve as the enzymic metal ligands in MPE: Asp33, His35, Asp78, Asn112, His124, His146, and His158 A swath of positive surface potential on either side of the active site pocket suggests a binding site for the single-strand DNA substrate. The structure of MPE differs from Mre11 and SbcD in several key respects: (i) MPE is a monomer, whereas Mre11 and SbcD are homodimers; (ii) MPE lacks the capping domain present in Mre11 and SbcD; and (iii) the topology of the ß sandwich that comprises the core of the metallophosphoesterase fold differs in MPE vis-à-vis Mre11 and SbcD. We surmise that MPE exemplifies a novel clade of DNA endonuclease within the binuclear metallophosphoesterase superfamily.
Assuntos
Proteínas de Bactérias , Endodesoxirribonucleases , Manganês , Família Multigênica , Pseudomonas/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Endodesoxirribonucleases/química , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Manganês/química , Manganês/metabolismo , Multimerização Proteica , Estrutura Secundária de Proteína , Pseudomonas/genéticaRESUMO
Mycobacterial Lhr is a DNA damage-inducible superfamily 2 helicase that uses adenosine triphosphate (ATP) hydrolysis to drive unidirectional 3'-to-5' translocation along single-stranded DNA (ssDNA) and to unwind RNA:DNA duplexes en route. ATPase, translocase and helicase activities are encompassed within the N-terminal 856-amino acid segment. The crystal structure of Lhr-(1-856) in complex with AMPPNPâ¢Mg2+ and ssDNA defines a new helicase family. The enzyme comprises two N-terminal RecA-like modules, a winged helix (WH) domain and a unique C-terminal domain. The 3' ssDNA end binds in a crescent-shaped groove at the interface between the first RecA domain and the WH domain and tracks 5' into a groove between the second RecA and C domains. A kissing interaction between the second RecA and C domains forms an aperture that demarcates a putative junction between the loading strand tail and the duplex, with the first duplex nucleoside bookended by stacking on Trp597. Intercalation of Ile528 between nucleosides of the loading strand creates another bookend. Coupling of ATP hydrolysis to RNA:DNA unwinding is dependent on Trp597 and Ile528, and on Thr145 and Arg279 that contact phosphates of the loading strand. The structural and functional data suggest a ratchet mechanism of translocation and unwinding coupled to ATP-driven domain movements.
Assuntos
Proteínas de Bactérias/química , DNA Helicases/química , DNA de Cadeia Simples/química , Mycobacterium/enzimologia , Domínios Proteicos , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Modelos Moleculares , Mycobacterium/genética , Ligação Proteica , RNA/química , RNA/genéticaRESUMO
Lhr is a large superfamily 2 helicase present in mycobacteria and a moderate range of other bacterial taxa. A shorter version of Lhr, here referred to as Lhr-Core, is distributed widely in bacteria, where it is often encoded in a gene cluster along with predicted binuclear metallo-phosphoesterase (MPE), ATP-dependent DNA ligase, and metallo-ß-lactamase exonuclease enzymes. Here we characterized the Lhr-Core and MPE proteins from Pseudomonas putida We report that P. putida Lhr-Core is an ssDNA-dependent ATPase/dATPase (Km , 0.37 mm ATP; kcat, 3.3 s-1), an ATP-dependent 3'-to-5' single-stranded DNA translocase, and an ATP-dependent 3'-to-5' helicase. Lhr-Core unwinds 3'-tailed duplexes in which the loading/tracking strand is DNA and the displaced strand is either DNA or RNA. We found that P. putida MPE is a manganese-dependent phosphodiesterase that releases p-nitrophenol from bis-p-nitrophenyl phosphate (kcat, 212 s-1) and p-nitrophenyl-5'-thymidylate (kcat, 34 s-1) but displays no detectable phosphomonoesterase activity against p-nitrophenyl phosphate. MPE is also a manganese-dependent DNA endonuclease that sequentially converts a closed-circle plasmid DNA to nicked circle and linear forms prior to degrading the linear DNA to produce progressively smaller fragments. The biochemical activities of MPE and a structure predicted in Phyre2 point to MPE as a new bacterial homolog of Mre11. Genetic linkage of a helicase and DNA nuclease with a ligase and a putative exonuclease (a predicted homolog of the SNM1/Apollo family of nucleases) suggests that these enzymes comprise or participate in a bacterial DNA repair pathway.