Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Biol Lett ; 19(11): 20230358, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37964576

RESUMO

Africa experiences frequent emerging disease outbreaks among humans, with bats often proposed as zoonotic pathogen hosts. We comprehensively reviewed virus-bat findings from papers published between 1978 and 2020 to evaluate the evidence that African bats are reservoir and/or bridging hosts for viruses that cause human disease. We present data from 162 papers (of 1322) with original findings on (1) numbers and species of bats sampled across bat families and the continent, (2) how bats were selected for study inclusion, (3) if bats were terminally sampled, (4) what types of ecological data, if any, were recorded and (5) which viruses were detected and with what methodology. We propose a scheme for evaluating presumed virus-host relationships by evidence type and quality, using the contrasting available evidence for Orthoebolavirus versus Orthomarburgvirus as an example. We review the wording in abstracts and discussions of all 162 papers, identifying key framing terms, how these refer to findings, and how they might contribute to people's beliefs about bats. We discuss the impact of scientific research communication on public perception and emphasize the need for strategies that minimize human-bat conflict and support bat conservation. Finally, we make recommendations for best practices that will improve virological study metadata.


Assuntos
Quirópteros , Vírus , Animais , Humanos , Reservatórios de Doenças , África
2.
Nat Commun ; 15(1): 2577, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38531842

RESUMO

Substantial global attention is focused on how to reduce the risk of future pandemics. Reducing this risk requires investment in prevention, preparedness, and response. Although preparedness and response have received significant focus, prevention, especially the prevention of zoonotic spillover, remains largely absent from global conversations. This oversight is due in part to the lack of a clear definition of prevention and lack of guidance on how to achieve it. To address this gap, we elucidate the mechanisms linking environmental change and zoonotic spillover using spillover of viruses from bats as a case study. We identify ecological interventions that can disrupt these spillover mechanisms and propose policy frameworks for their implementation. Recognizing that pandemics originate in ecological systems, we advocate for integrating ecological approaches alongside biomedical approaches in a comprehensive and balanced pandemic prevention strategy.


Assuntos
Pandemias , Vírus , Animais , Zoonoses/epidemiologia , Ecossistema
3.
Sci Rep ; 7(1): 6928, 2017 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-28761151

RESUMO

Hepatocystis parasites are closely related to mammalian Plasmodium species, the causative agents of malaria. Despite the close phylogenetic relationship, Hepatocystis parasites lack the intermittent erythrocytic replication cycles, the signature and exclusive cause of malaria-related morbidity and mortality. Hepatocystis population expansion in the mammalian host is thought to be restricted to the pre-erythrocytic liver phase. Complete differentiation of first generation blood stages into sexual stages for subsequent vector transmission indicates alternative parasite/host co-evolution. In this study, we identified a region of exceptionally high prevalence of Hepatocystis infections in Old World fruit bats in South Sudan. Investigations over the course of five consecutive surveys revealed an average of 93 percent prevalence in four genera of African epauletted fruit bats. We observed a clear seasonal pattern and tolerance of high parasite loads in these bats. Phylogenetic analyses revealed several cryptic Hepatocystis parasite species and, in contrast to mammalian Plasmodium parasites, neither host specificity nor strong geographical patterns were evident. Together, our study provides evidence for Pan-African distribution and local high endemicity of a Hepatocystis species complex in Pteropodidae.


Assuntos
Quirópteros , Haemosporida/classificação , Haemosporida/fisiologia , Infecções Protozoárias em Animais/epidemiologia , Animais , Feminino , Haemosporida/genética , Especificidade de Hospedeiro , Masculino , Filogenia , Prevalência , Infecções Protozoárias em Animais/parasitologia , Estações do Ano , Sudão do Sul/epidemiologia , Inquéritos e Questionários
4.
Vector Borne Zoonotic Dis ; 17(4): 243-246, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28165925

RESUMO

Candidatus Bartonella mayotimonensis was detected in 2010 from an aortic valve sample of a patient with endocarditis from Iowa, the United States of America. The environmental source of the potentially new endocarditis-causing Bartonella remained elusive. We set out to study the prevalence and diversity of bat-associated Bartonella in North America. During 2015, mist nets and harp traps were used to capture 92 bats belonging to two species: little brown myotis (Myotis lucifugus Le Conte 1831, n = 73) and the gray myotis (M. grisescens A.H. Howell 1909, n = 19) in Kentucky, Michigan, Pennsylvania, and Tennessee. DNA preparations of peripheral blood samples from bats were subjected to a three-marker (gltA, rpoB, and intergenic spacer region [ISR]) multilocus sequence analysis. Sequence-verified gltA-positive PCR amplicons were obtained from nine samples. Three sequences were 99.7-100% identical with the gltA sequence of the Iowa endocarditis patient strain. Analysis of rpoB and ISR sequences demonstrated that one little brown myotis sample from the Upper Peninsula of Michigan contained Bartonella DNA, with 100% sequence identity with the Iowa endocarditis patient strain DNA. It appears possible that bats are a reservoir of Candidatus Bartonella mayotimonensis in North America.


Assuntos
Infecções por Bartonella/veterinária , Bartonella/isolamento & purificação , Quirópteros/microbiologia , Animais , Infecções por Bartonella/epidemiologia , Infecções por Bartonella/microbiologia , DNA Bacteriano/genética , Prevalência , Estados Unidos/epidemiologia
6.
Zookeys ; (285): 89-115, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23805046

RESUMO

A new genus is proposed for the strikingly patterned African vespertilionid "Glauconycteris" superba Hayman, 1939 on the basis of cranial and external morphological comparisons. A review of the attributes of a newly collected specimen from South Sudan (a new country record) and other museum specimens of "Glauconycteris" superba suggests that "Glauconycteris" superba is markedly distinct ecomorphologically from other species classified in Glauconycteris and is likely the sister taxon to Glauconycteris sensu stricto. The recent capture of this rarely collected but widespread bat highlights the need for continued research in tropical sub-Saharan Africa and in particular, for more work in western South Sudan, which has received very little scientific attention. New country records for Glauconycteris cf. poensis (South Sudan) and Glauconycteris curryae (Gabon) are also reported.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA