Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nat Chem Biol ; 7(12): 950-8, 2011 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-22037469

RESUMO

Inosine monophosphate dehydrogenase (IMPDH) and guanosine monophosphate reductase (GMPR) belong to the same structural family, share a common set of catalytic residues and bind the same ligands. The structural and mechanistic features that determine reaction outcome in the IMPDH and GMPR family have not been identified. Here we show that the GMPR reaction uses the same intermediate E-XMP* as IMPDH, but in this reaction the intermediate reacts with ammonia instead of water. A single crystal structure of human GMPR type 2 with IMP and NADPH fortuitously captures three different states, each of which mimics a distinct step in the catalytic cycle of GMPR. The cofactor is found in two conformations: an 'in' conformation poised for hydride transfer and an 'out' conformation in which the cofactor is 6 Å from IMP. Mutagenesis along with substrate and cofactor analog experiments demonstrate that the out conformation is required for the deamination of GMP. Remarkably, the cofactor is part of the catalytic machinery that activates ammonia.


Assuntos
GMP Redutase/metabolismo , IMP Desidrogenase/metabolismo , Biocatálise , Cristalografia por Raios X , GMP Redutase/química , Guanosina Monofosfato/biossíntese , Guanosina Monofosfato/química , Guanosina Monofosfato/metabolismo , Humanos , IMP Desidrogenase/química , Inosina Monofosfato/química , Inosina Monofosfato/metabolismo , Cinética , Modelos Moleculares , Estrutura Molecular , NADP/química , NADP/metabolismo , Teoria Quântica , Compostos de Sulfidrila/química , Compostos de Sulfidrila/metabolismo
2.
Nature ; 448(7149): 92-6, 2007 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-17611542

RESUMO

Oxygen-evolving photosynthetic organisms regulate carbon metabolism through a light-dependent redox signalling pathway. Electrons are shuttled from photosystem I by means of ferredoxin (Fdx) to ferredoxin-thioredoxin reductase (FTR), which catalyses the two-electron-reduction of chloroplast thioredoxins (Trxs). These modify target enzyme activities by reduction, regulating carbon flow. FTR is unique in its use of a [4Fe-4S] cluster and a proximal disulphide bridge in the conversion of a light signal into a thiol signal. We determined the structures of FTR in both its one- and its two-electron-reduced intermediate states and of four complexes in the pathway, including the ternary Fdx-FTR-Trx complex. Here we show that, in the first complex (Fdx-FTR) of the pathway, the Fdx [2Fe-2S] cluster is positioned suitably for electron transfer to the FTR [4Fe-4S] centre. After the transfer of one electron, an intermediate is formed in which one sulphur atom of the FTR active site is free to attack a disulphide bridge in Trx and the other sulphur atom forms a fifth ligand for an iron atom in the FTR [4Fe-4S] centre--a unique structure in biology. Fdx then delivers a second electron that cleaves the FTR-Trx heterodisulphide bond, which occurs in the Fdx-FTR-Trx complex. In this structure, the redox centres of the three proteins are aligned to maximize the efficiency of electron transfer from the Fdx [2Fe-2S] cluster to the active-site disulphide of Trxs. These results provide a structural framework for understanding the mechanism of disulphide reduction by an iron-sulphur enzyme and describe previously unknown interaction networks for both Fdx and Trx (refs 4-6).


Assuntos
Ferredoxinas/química , Proteínas Ferro-Enxofre/química , Oxirredutases/química , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Transporte de Elétrons , Ferredoxinas/metabolismo , Ferro/química , Proteínas Ferro-Enxofre/metabolismo , Modelos Moleculares , Oxirredução , Oxirredutases/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Conformação Proteica , Proteínas Recombinantes , Spinacia oleracea , Relação Estrutura-Atividade , Synechocystis , Tiorredoxinas/química , Tiorredoxinas/metabolismo
3.
Acta Crystallogr D Biol Crystallogr ; 65(Pt 1): 24-33, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19153463

RESUMO

Bacterial Rieske non-heme iron oxygenases catalyze the initial hydroxylation of aromatic hydrocarbon substrates. The structures of all three components of one such system, the toluene 2,3-dioxygenase system, have now been determined. This system consists of a reductase, a ferredoxin and a terminal dioxygenase. The dioxygenase, which was cocrystallized with toluene, is a heterohexamer containing a catalytic and a structural subunit. The catalytic subunit contains a Rieske [2Fe-2S] cluster and mononuclear iron at the active site. This iron is not strongly bound and is easily removed during enzyme purification. The structures of the enzyme with and without mononuclear iron demonstrate that part of the structure is flexible in the absence of iron. The orientation of the toluene substrate in the active site is consistent with the regiospecificity of oxygen incorporation seen in the product formed. The ferredoxin is Rieske type and contains a [2Fe-2S] cluster close to the protein surface. The reductase belongs to the glutathione reductase family of flavoenzymes and consists of three domains: an FAD-binding domain, an NADH-binding domain and a C-terminal domain. A model for electron transfer from NADH via FAD in the reductase and the ferredoxin to the terminal active-site mononuclear iron of the dioxygenase is proposed.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/química , Oxigenases de Função Mista/metabolismo , Complexos Multienzimáticos/metabolismo , Tolueno/metabolismo , Domínio Catalítico , Cristalização , Cristalografia por Raios X , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Flavina-Adenina Dinucleotídeo/química , Ferro/química , Modelos Químicos , Complexos Multienzimáticos/química , NAD/química , Ligação Proteica , Pseudomonas putida/enzimologia , Especificidade por Substrato
4.
Biochem Biophys Res Commun ; 382(2): 430-3, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19285960

RESUMO

Drosophila melanogaster multisubstrate deoxyribonucleoside kinase (Dm-dNK) can additionally sensitize human cancer cell lines towards the anti-cancer drug gemcitabine. We show that this property is based on the Dm-dNK ability to efficiently phosphorylate gemcitabine. The 2.2A resolution structure of Dm-dNK in complex with gemcitabine shows that the residues Tyr70 and Arg105 play a crucial role in the firm positioning of gemcitabine by extra interactions made by the fluoride atoms. This explains why gemcitabine is a good substrate for Dm-dNK.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Desoxicitidina/análogos & derivados , Drosophila melanogaster/enzimologia , Resistencia a Medicamentos Antineoplásicos , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Animais , Antimetabólitos Antineoplásicos/química , Antimetabólitos Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Desoxicitidina/química , Desoxicitidina/metabolismo , Desoxicitidina/farmacologia , Humanos , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Conformação Proteica , Relação Estrutura-Atividade , Especificidade por Substrato , Gencitabina
5.
FEBS J ; 275(9): 2151-60, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18384378

RESUMO

The Drosophila melanogaster multisubstrate deoxyribonucleoside kinase (dNK; EC 2.7.1.145) has a high turnover rate and a wide substrate range that makes it a very good candidate for gene therapy. This concept is based on introducing a suicide gene into malignant cells in order to activate a prodrug that eventually may kill the cell. To be able to optimize the function of dNK, it is vital to have structural information of dNK complexes. In this study we present crystal structures of dNK complexed with four different nucleoside analogs (floxuridine, brivudine, zidovudine and zalcitabine) and relate them to the binding of substrate and feedback inhibitors. dCTP and dGTP bind with the base in the substrate site, similarly to the binding of the feedback inhibitor dTTP. All nucleoside analogs investigated bound in a manner similar to that of the pyrimidine substrates, with many interactions in common. In contrast, the base of dGTP adopted a syn-conformation to adapt to the available space of the active site.


Assuntos
Antimetabólitos/metabolismo , Drosophila melanogaster/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Difosfato de Adenosina/metabolismo , Animais , Bromodesoxiuridina/análogos & derivados , Bromodesoxiuridina/metabolismo , Citarabina/metabolismo , Citidina Trifosfato/metabolismo , Proteínas de Drosophila , Drosophila melanogaster/genética , Retroalimentação/efeitos dos fármacos , Floxuridina/metabolismo , Guanosina Trifosfato/metabolismo , Ligação de Hidrogênio , Concentração Inibidora 50 , Cinética , Modelos Químicos , Modelos Moleculares , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Ligação Proteica , Estrutura Secundária de Proteína , Relação Estrutura-Atividade , Nucleotídeos de Timina/metabolismo , Difração de Raios X , Zalcitabina/metabolismo , Zidovudina/metabolismo
6.
J Mol Biol ; 366(5): 1615-23, 2007 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-17229440

RESUMO

Deoxyribonucleoside kinases (dNKs) catalyze the transfer of a phosphoryl group from ATP to a deoxyribonucleoside (dN), a key step in DNA precursor synthesis. Recently structural information concerning dNKs has been obtained, but no structure of a bacterial dCK/dGK enzyme is known. Here we report the structure of such an enzyme, represented by deoxyadenosine kinase from Mycoplasma mycoides subsp. mycoides small colony type (Mm-dAK). Superposition of Mm-dAK with its human counterpart's deoxyguanosine kinase (dGK) and deoxycytidine kinase (dCK) reveals that the overall structures are very similar with a few amino acid alterations in the proximity of the active site. To investigate the substrate specificity, Mm-dAK has been crystallized in complex with dATP and dCTP, as well as the products dCMP and dCDP. Both dATP and dCTP bind to the enzyme in a feedback-inhibitory manner with the dN part in the deoxyribonucleoside binding site and the triphosphates in the P-loop. Substrate specificity studies with clinically important nucleoside analogs as well as several phosphate donors were performed. Thus, in this study we combine structural and kinetic data to gain a better understanding of the substrate specificity of the dCK/dGK family of enzymes. The structure of Mm-dAK provides a starting point for making new anti bacterial agents against pathogenic bacteria.


Assuntos
Proteínas de Bactérias/química , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Sequência de Aminoácidos , Aminoácidos , Proteínas de Bactérias/análise , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Sequência Conservada , Cristalografia por Raios X , Nucleotídeos de Desoxiadenina/metabolismo , Nucleotídeos de Desoxicitosina/metabolismo , Dimerização , Desenho de Fármacos , Humanos , Ligação de Hidrogênio , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Peso Molecular , Mycoplasma mycoides/enzimologia , Fosfotransferases (Aceptor do Grupo Álcool)/análise , Fosfotransferases (Aceptor do Grupo Álcool)/isolamento & purificação , Ligação Proteica , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Especificidade por Substrato
7.
FEBS J ; 274(6): 1542-51, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17302737

RESUMO

The catalytic reaction mechanism and binding of substrates was investigated for the multisubstrate Drosophila melanogaster deoxyribonucleoside kinase. Mutation of E52 to D, Q and H plus mutations of R105 to K and H were performed to investigate the proposed catalytic reaction mechanism, in which E52 acts as an initiating base and R105 is thought to stabilize the transition state of the reaction. Mutant enzymes (E52D, E52H and R105H) showed a markedly decreased k(cat), while the catalytic activity of E52Q and R105K was abolished. The E52D mutant was crystallized with its feedback inhibitor dTTP. The backbone conformation remained unchanged, and coordination between D52 and the dTTP-Mg complex was observed. The observed decrease in k(cat) for E52D was most likely due to an increased distance between the catalytic carboxyl group and 5'-OH of deoxythymidine (dThd) or deoxycytidine (dCyd). Mutation of Q81 to N and Y70 to W was carried out to investigate substrate binding. The mutations primarily affected the K(m) values, whereas the k(cat) values were of the same magnitude as for the wild-type. The Y70W mutation made the enzyme lose activity towards purines and negative cooperativity towards dThd and dCyd was observed. The Q81N mutation showed a 200- and 100-fold increase in K(m), whereas k(cat) was decreased five- and twofold for dThd and dCyd, respectively, supporting a role in substrate binding. These observations give insight into the mechanisms of substrate binding and catalysis, which is important for developing novel suicide genes and drugs for use in gene therapy.


Assuntos
Arginina/metabolismo , Drosophila melanogaster/enzimologia , Glutamatos/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Sítios de Ligação , Catálise , Primers do DNA , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fosforilação , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
8.
FEBS J ; 274(3): 727-37, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17288553

RESUMO

Thymidine kinase (TK) is the key enzyme in salvaging thymidine to produce thymidine monophosphate. Owing to its ability to phosphorylate nucleoside analogue prodrugs, TK has gained attention as a rate-limiting drug activator. We describe the structures of two bacterial TKs, one from the pathogen Bacillus anthracis in complex with the substrate dT, and the second from the food-poison-associated Bacillus cereus in complex with the feedback inhibitor dTTP. Interestingly, in contrast with previous structures of TK in complex with dTTP, in this study dTTP occupies the phosphate donor site and not the phosphate acceptor site. This results in several conformational changes compared with TK structures described previously. One of the differences is the way tetramers are formed. Unlike B. anthracis TK, B. cereus TK shows a loose tetramer. Moreover, the lasso-domain is in open conformation in B. cereus TK without any substrate in the active site, whereas in B. anthracis TK the loop conformation is closed and thymidine occupies the active site. Another conformational difference lies within a region of 20 residues that we refer to as phosphate-binding beta-hairpin. The phosphate-binding beta-hairpin seems to be a flexible region of the enzyme which becomes ordered upon formation of hydrogen bonds to the alpha-phosphate of the phosphate donor, dTTP. In addition to descriptions of the different conformations that TK may adopt during the course of reaction, the oligomeric state of the enzyme is investigated.


Assuntos
Bacillus anthracis/enzimologia , Bacillus cereus/enzimologia , Timidina Quinase/química , Sequência de Aminoácidos , Bacillus anthracis/genética , Bacillus cereus/genética , Sítios de Ligação , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência , Timidina Quinase/genética , Timidina Quinase/metabolismo
9.
J Mol Biol ; 348(5): 1139-51, 2005 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-15854650

RESUMO

Nitroaromatic compounds are used extensively in many industrial processes and have been released into the environment where they are considered environmental pollutants. Nitroaromatic compounds, in general, are resistant to oxidative attack due to the electron-withdrawing nature of the nitro groups and the stability of the benzene ring. However, the bacterium Comamonas sp. strain JS765 can grow with nitrobenzene as a sole source of carbon, nitrogen and energy. Biodegradation is initiated by the nitrobenzene dioxygenase (NBDO) system. We have determined the structure of NBDO, which has a hetero-hexameric structure similar to that of several other Rieske non-heme iron dioxygenases. The catalytic subunit contains a Rieske iron-sulfur center and an active-site mononuclear iron atom. The structures of complexes with substrates nitrobenzene and 3-nitrotoluene reveal the structural basis for its activity with nitroarenes. The substrate pocket contains an asparagine residue that forms a hydrogen bond to the nitro-group of the substrate, and orients the substrate in relation to the active-site mononuclear iron atom, positioning the molecule for oxidation at the nitro-substituted carbon.


Assuntos
Proteínas de Bactérias/química , Comamonas/enzimologia , Dioxigenases/química , Nitrobenzenos/metabolismo , Sequência de Aminoácidos , Biodegradação Ambiental , Cristalografia , Dados de Sequência Molecular , Estrutura Molecular , Ligação Proteica , Conformação Proteica , Alinhamento de Sequência , Especificidade por Substrato
10.
FEBS J ; 272(24): 6365-72, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16336273

RESUMO

Thymidine kinases have been found in most organisms, from viruses and bacteria to mammals. Ureaplasma urealyticum (parvum), which belongs to the class of cell-wall-lacking Mollicutes, has no de novo synthesis of DNA precursors and therefore has to rely on the salvage pathway. Thus, thymidine kinase (Uu-TK) is the key enzyme in dTTP synthesis. Recently the 3D structure of Uu-TK was determined in a feedback inhibitor complex, demonstrating that a lasso-like loop binds the thymidine moiety of the feedback inhibitor by hydrogen bonding to main-chain atoms. Here the structure with the substrate deoxythymidine is presented. The substrate binds similarly to the deoxythymidine part of the feedback inhibitor, and the lasso-like loop binds the base and deoxyribose moieties as in the complex determined previously. The catalytic base, Glu97, has a different position in the substrate complex from that in the complex with the feedback inhibitor, having moved in closer to the 5'-OH of the substrate to form a hydrogen bond. The phosphorylation of and inhibition by several nucleoside analogues were investigated and are discussed in the light of the substrate binding pocket, in comparison with human TK1. Kinetic differences between Uu-TK and human TK1 were observed that may be explained by structural differences. The tight interaction with the substrate allows minor substitutions at the 3 and 5 positions of the base, only fluorine substitutions at the 2'-Ara position, but larger substitutions at the 3' position of the deoxyribose.


Assuntos
Timidina Quinase/química , Ureaplasma urealyticum/enzimologia , Sítios de Ligação , Sistemas de Liberação de Medicamentos , Humanos , Cinética , Ligação Proteica , Conformação Proteica , Timidina Quinase/antagonistas & inibidores , Nucleotídeos de Timina/biossíntese
11.
FEBS J ; 272(14): 3733-42, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16008571

RESUMO

The Drosophila melanogaster deoxyribonucleoside kinase (Dm-dNK) double mutant N45D/N64D was identified during a previous directed evolution study. This mutant enzyme had a decreased activity towards the natural substrates and decreased feedback inhibition with dTTP, whereas the activity with 3'-modified nucleoside analogs like 3'-azidothymidine (AZT) was nearly unchanged. Here, we identify the mutation N64D as being responsible for these changes. Furthermore, we crystallized the mutant enzyme in the presence of one of its substrates, thymidine, and the feedback inhibitor, dTTP. The introduction of the charged Asp residue appears to destabilize the LID region (residues 167-176) of the enzyme by electrostatic repulsion and no hydrogen bond to the 3'-OH is made in the substrate complex by Glu172 of the LID region. This provides a binding space for more bulky 3'-substituents like the azido group in AZT but influences negatively the interactions between Dm-dNK, substrates and feedback inhibitors based on deoxyribose. The detailed picture of the structure-function relationship provides an improved background for future development of novel mutant suicide genes for Dm-dNK-mediated gene therapy.


Assuntos
Asparagina/genética , Ácido Aspártico/genética , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Mutação/genética , Fosfotransferases (Aceptor do Grupo Álcool)/química , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Animais , Asparagina/metabolismo , Ácido Aspártico/metabolismo , Cristalografia por Raios X , Cinética , Modelos Moleculares , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Estrutura Terciária de Proteína , Especificidade por Substrato , Nucleotídeos de Timina/farmacologia
12.
J Mol Biol ; 330(1): 87-97, 2003 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-12818204

RESUMO

The three-dimensional structure of the large subunit of the first member of a class Ib ribonucleotide reductase, R1E of Salmonella typhimurium, has been determined in its native form and together with three allosteric effectors. The enzyme contains the characteristic ten-stranded alpha/beta-barrel with catalytic residues at a finger loop in its center and with redox-active cysteine residues at two adjacent barrel strands. Structures where the redox-active cysteine residues are in reduced thiol form and in oxidized disulfide form have been determined revealing local structural changes. The R1E enzyme differs from the class Ia enzyme, Escherichia coli R1, by not having an overall allosteric regulation. This is explained from the structure by differences in the N-terminal domain, which is about 50 residues shorter and lacks the overall allosteric binding site. R1E has an allosteric substrate specificity regulation site and the binding site for the nucleotide effectors is located at the dimer interface similarly as for the class Ia enzymes. We have determined the structures of R1E in the absence of effectors and with dTTP, dATP and dCTP bound. The low affinity for ATP at the specificity site is explained by a tyrosine, which hinders nucleotides containing a 2'-OH group to bind.


Assuntos
Ribonucleotídeo Redutases/química , Ribonucleotídeo Redutases/metabolismo , Salmonella typhimurium/enzimologia , Regulação Alostérica/fisiologia , Sítio Alostérico , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Cisteína/química , Cisteína/metabolismo , Nucleotídeos de Desoxiadenina/química , Nucleotídeos de Desoxiadenina/metabolismo , Nucleotídeos de Desoxicitosina/química , Nucleotídeos de Desoxicitosina/metabolismo , Dimerização , Escherichia coli/enzimologia , Substâncias Macromoleculares , Modelos Moleculares , Dados de Sequência Molecular , Oxirredução , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Homologia de Sequência de Aminoácidos , Nucleotídeos de Timina/química , Nucleotídeos de Timina/metabolismo
13.
J Mol Biol ; 318(2): 261-72, 2002 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-12051836

RESUMO

One of the major processes for aerobic biodegradation of aromatic compounds is initiated by Rieske dioxygenases. Benzoate dioxygenase contains a reductase component, BenC, that is responsible for the two-electron transfer from NADH via FAD and an iron-sulfur cluster to the terminal oxygenase component. Here, we present the structure of BenC from Acinetobacter sp. strain ADP1 at 1.5 A resolution. BenC contains three domains, each binding a redox cofactor: iron-sulfur, FAD and NADH, respectively. The [2Fe-2S] domain is similar to that of plant ferredoxins, and the FAD and NADH domains are similar to members of the ferredoxin:NADPH reductase superfamily. In phthalate dioxygenase reductase, the only other Rieske dioxygenase reductase for which a crystal structure is available, the ferredoxin-like and flavin binding domains are sequentially reversed compared to BenC. The BenC structure shows significant differences in the location of the ferredoxin domain relative to the other domains, compared to phthalate dioxygenase reductase and other known systems containing these three domains. In BenC, the ferredoxin domain interacts with both the flavin and NAD(P)H domains. The iron-sulfur center and the flavin are about 9 A apart, which allows a fast electron transfer. The BenC structure is the first determined for a reductase from the class IB Rieske dioxygenases, whose reductases transfer electrons directly to their oxygenase components. Based on sequence similarities, a very similar structure was modeled for the class III naphthalene dioxygenase reductase, which transfers electrons to an intermediary ferredoxin, rather than the oxygenase component.


Assuntos
Acinetobacter/enzimologia , Oxigenases/química , Acinetobacter/genética , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , Cristalografia por Raios X , Transporte de Elétrons , Ferredoxina-NADP Redutase/química , Ferredoxinas/química , Flavinas/metabolismo , Ferro/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , NAD/metabolismo , Oxigenases/genética , Oxigenases/metabolismo , Conformação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Enxofre/metabolismo
14.
J Mol Biol ; 318(3): 707-21, 2002 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-12054817

RESUMO

The three-dimensional structure of four malate dehydrogenases (MDH) from thermophilic and mesophilic phototropic bacteria have been determined by X-ray crystallography and the corresponding structures compared. In contrast to the dimeric quaternary structure of most MDHs, these MDHs are tetramers and are structurally related to tetrameric malate dehydrogenases from Archaea and to lactate dehydrogenases. The tetramers are dimers of dimers, where the structures of each subunit and the dimers are similar to the dimeric malate dehydrogenases. The difference in optimal growth temperature of the corresponding organisms is relatively small, ranging from 32 to 55 degrees C. Nevertheless, on the basis of the four crystal structures, a number of factors that are likely to contribute to the relative thermostability in the present series have been identified. It appears from the results obtained, that the difference in thermostability between MDH from the mesophilic Chlorobium vibrioforme on one hand and from the moderate thermophile Chlorobium tepidum on the other hand is mainly due to the presence of polar residues that form additional hydrogen bonds within each subunit. Furthermore, for the even more thermostable Chloroflexus aurantiacus MDH, the use of charged residues to form additional ionic interactions across the dimer-dimer interface is favored. This enzyme has a favorable intercalation of His-Trp as well as additional aromatic contacts at the monomer-monomer interface in each dimer. A structural alignment of tetrameric and dimeric prokaryotic MDHs reveal that structural elements that differ among dimeric and tetrameric MDHs are located in a few loop regions.


Assuntos
Malato Desidrogenase/química , Sequência de Aminoácidos , Archaea/enzimologia , Archaea/genética , Bactérias/enzimologia , Bactérias/genética , Domínio Catalítico , Chlorobi/enzimologia , Chlorobi/genética , Cristalografia por Raios X , Dimerização , Estabilidade Enzimática , L-Lactato Desidrogenase/química , L-Lactato Desidrogenase/genética , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Estrutura Quaternária de Proteína , Subunidades Proteicas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Homologia de Sequência de Aminoácidos , Eletricidade Estática , Temperatura
15.
J Mol Biol ; 342(2): 489-502, 2004 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-15327949

RESUMO

In the course of a structural genomics program aiming at solving the structures of Escherichia coli open reading frame (ORF) products of unknown function, we have determined the structure of YqhD at 2.0A resolution using the single wavelength anomalous diffraction method at the Pt edge. The crystal structure of YqhD reveals that it is an NADP-dependent dehydrogenase, a result confirmed by activity measurements with several alcohols. The current interpretation of our findings is that YqhD is an alcohol dehydrogenase (ADH) with preference for alcohols longer than C(3). YqhD is a dimer of 2x387 residues, each monomer being composed of two domains, a Rossmann-type fold and an alpha-helical domain. The crystals contain two dimers in the asymmetric unit. While one of the dimers contains a cofactor in both subunits, only one of the subunits in the second dimer contains it, making it possible to compare bound and unbound active sites. The active site contains a Zn atom, as verified by EXAFS on the crystals. The electron density maps of NADP revealed modifications of the nicotinamide ring by oxygen atoms at positions 5 and 6. Further analysis by electrospray mass spectrometry and comparison with the mass spectra of NADP and NADPH revealed the nature of the modification and the incorporation of two hydroxyl moieties at the 5 and 6 position in the nicotinamide ring, yielding NADPH(OH)(2). These modifications might be due to oxygen stress on an enzyme, which would functionally work under anaerobic conditions.


Assuntos
Álcool Desidrogenase/química , Coenzimas/química , Escherichia coli/química , NADP/metabolismo , Álcool Desidrogenase/metabolismo , Domínio Catalítico , Coenzimas/metabolismo , Cristalografia por Raios X , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Cinética , Espectrometria de Massas , Modelos Moleculares , Niacinamida/química , Niacinamida/metabolismo , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína
16.
FEBS Lett ; 554(3): 301-5, 2003 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-14623083

RESUMO

The three-dimensional structure of thioredoxin from Trypanosoma brucei brucei has been determined at 1.4 A resolution. The overall structure is more similar to that of human thioredoxin than to any other thioredoxin structure. The most striking difference to other thioredoxins is the absence of a buried carboxylate behind the active site cysteines. Instead of the common Asp, there is a Trp that binds an ordered water molecule probably involved in the protonation/deprotonation of the more buried cysteine during catalysis. The conserved Trp in the WCGPC sequence motif has an exposed position that can interact with target proteins.


Assuntos
Tiorredoxinas/química , Trypanosoma brucei brucei/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Sequência Conservada , Cristalografia por Raios X , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Oxirredução , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Tiorredoxinas/genética , Trypanosoma brucei brucei/genética , Triptofano/genética
17.
FEBS Lett ; 514(2-3): 243-9, 2002 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-11943159

RESUMO

Pectin is a principal component in the primary cell wall of plants. During cell development, pectin is modified by pectin methylesterases to give different properties to the cell wall. This report describes the first crystal structure of a plant pectin methylesterase. The beta-helical structure embodies a central cleft, lined by several aromatic residues, that has been deduced to be suitable for pectin binding. The active site is found at the center of this cleft where Asp157 is suggested to act as the nucleophile, Asp136 as an acid/base and Gln113/Gln135 to form an anion hole to stabilize the transition state.


Assuntos
Hidrolases de Éster Carboxílico/química , Daucus carota/enzimologia , Modelos Moleculares , Sítios de Ligação/fisiologia , Catálise , Cristalografia por Raios X , Dickeya chrysanthemi/enzimologia , Dados de Sequência Molecular , Proteínas de Plantas/química , Estrutura Secundária de Proteína/fisiologia , Estrutura Terciária de Proteína/fisiologia , Homologia de Sequência de Aminoácidos
18.
Photosynth Res ; 79(3): 233-48, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-16328790

RESUMO

The role of the ferredoxin:thioredoxin system in the reversible light activation of chloroplast enzymes by thiol-disulfide interchange with thioredoxins is now well established. Recent fruitful collaboration between biochemists and structural biologists, reflected by the shared authorship of the paper, allowed to solve the structures of all of the components of the system, including several target enzymes, thus providing a structural basis for the elucidation of the activation mechanism at a molecular level. In the present Review, these structural data are analyzed in conjunction with the information that was obtained previously through biochemical and site-directed mutagenesis approaches. The unique 4Fe-4S cluster enzyme ferredoxin:thioredoxin reductase (FTR) uses photosynthetically reduced ferredoxin as an electron donor to reduce the disulfide bridge of different thioredoxin isoforms. Thioredoxins in turn reduce regulatory disulfides of various target enzymes. This process triggers conformational changes on these enzymes, allowing them to reach optimal activity. No common activation mechanism can be put forward for these enzymes, as every thioredoxin-regulated protein undergoes specific structural modifications. It is thus important to solve the structures of the individual target enzymes in order to fully understand the molecular mechanism of the redox regulation of each of them.

19.
Chem Biol Interact ; 143-144: 239-45, 2003 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-12604209

RESUMO

Three-dimensional structures of the ethanol-induced, tetrameric alcohol dehydrogenase from Escherichia coli have recently been determined in the absence and presence of NAD. The structure of the E. coli enzyme is similar to those of the dimeric mammalian alcohol dehydrogenases, but it has a deletion of 21 residues located at the surface of the catalytic domain. The catalytic zinc ions have two different types of coordination, which are also observed in the class III dimeric mammalian alcohol dehydrogenase. Comparison of the structures provide new insights into the relationship between tetrameric and dimeric alcohol dehydrogenases and provide a link to the structure of the tetrameric yeast alcohol dehydrogenase.


Assuntos
Álcool Desidrogenase/metabolismo , NAD/metabolismo , Álcool Desidrogenase/química , Sequência de Aminoácidos , Biopolímeros/química , Biopolímeros/metabolismo , Catálise , Escherichia coli/enzimologia , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Homologia de Sequência de Aminoácidos , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA