Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 45(11): e98, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28334779

RESUMO

Realizing the full potential of genome editing requires the development of efficient and broadly applicable methods for delivering programmable nucleases and donor templates for homology-directed repair (HDR). The RNA-guided Cas9 endonuclease can be introduced into cells as a purified protein in complex with a single guide RNA (sgRNA). Such ribonucleoproteins (RNPs) can facilitate the high-fidelity introduction of single-base substitutions via HDR following co-delivery with a single-stranded DNA oligonucleotide. However, combining RNPs with transgene-containing donor templates for targeted gene addition has proven challenging, which in turn has limited the capabilities of the RNP-mediated genome editing toolbox. Here, we demonstrate that combining RNP delivery with naturally recombinogenic adeno-associated virus (AAV) donor vectors enables site-specific gene insertion by homology-directed genome editing. Compared to conventional plasmid-based expression vectors and donor templates, we show that combining RNP and AAV donor delivery increases the efficiency of gene addition by up to 12-fold, enabling the creation of lineage reporters that can be used to track the conversion of striatal neurons from human fibroblasts in real time. These results thus illustrate the potential for unifying nuclease protein delivery with AAV donor vectors for homology-directed genome editing.


Assuntos
Proteínas de Bactérias/química , Dependovirus/genética , Endonucleases/química , Técnicas de Introdução de Genes , Sequência de Bases , Proteína 9 Associada à CRISPR , Diferenciação Celular , Fibroblastos/fisiologia , Engenharia Genética/métodos , Vetores Genéticos , Genoma Humano , Células HEK293 , Humanos , Neurônios/metabolismo , Homologia de Sequência do Ácido Nucleico
2.
Nat Biotechnol ; 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537500

RESUMO

Therapeutic applications of nuclease-based genome editing would benefit from improved methods for transgene integration via homology-directed repair (HDR). To improve HDR efficiency, we screened six small-molecule inhibitors of DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a key protein in the alternative repair pathway of non-homologous end joining (NHEJ), which generates genomic insertions/deletions (INDELs). From this screen, we identified AZD7648 as the most potent compound. The use of AZD7648 significantly increased HDR (up to 50-fold) and concomitantly decreased INDELs across different genomic loci in various therapeutically relevant primary human cell types. In all cases, the ratio of HDR to INDELs markedly increased, and, in certain situations, INDEL-free high-frequency (>50%) targeted integration was achieved. This approach has the potential to improve the therapeutic efficacy of cell-based therapies and broaden the use of targeted integration as a research tool.

3.
Mol Ther Nucleic Acids ; 17: 829-839, 2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31465962

RESUMO

Huntington's disease (HD) is a currently incurable and, ultimately, fatal neurodegenerative disorder caused by a CAG trinucleotide repeat expansion within exon 1 of the huntingtin (HTT) gene, which results in the production of a mutant protein that forms inclusions and selectively destroys neurons in the striatum and other adjacent structures. The RNA-guided Cas9 endonuclease from CRISPR-Cas9 systems is a versatile technology for inducing DNA double-strand breaks that can stimulate the introduction of frameshift-inducing mutations and permanently disable mutant gene function. Here, we show that the Cas9 nuclease from Staphylococcus aureus, a small Cas9 ortholog that can be packaged alongside a single guide RNA into a single adeno-associated virus (AAV) vector, can be used to disrupt the expression of the mutant HTT gene in the R6/2 mouse model of HD following its in vivo delivery to the striatum. Specifically, we found that CRISPR-Cas9-mediated disruption of the mutant HTT gene resulted in a ∼50% decrease in neuronal inclusions and significantly improved lifespan and certain motor deficits. These results thus illustrate the potential for CRISPR-Cas9 technology to treat HD and other autosomal dominant neurodegenerative disorders caused by a trinucleotide repeat expansion via in vivo genome editing.

4.
Stem Cell Reports ; 10(5): 1481-1491, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29628395

RESUMO

Huntington disease (HD) is an inherited, progressive neurological disorder characterized by degenerating striatal medium spiny neurons (MSNs). One promising approach for treating HD is cell replacement therapy, where lost cells are replaced by MSN progenitors derived from human pluripotent stem cells (hPSCs). While there has been remarkable progress in generating hPSC-derived MSNs, current production methods rely on two-dimensional culture systems that can include poorly defined components, limit scalability, and yield differing preclinical results. To facilitate clinical translation, here, we generated striatal progenitors from hPSCs within a fully defined and scalable PNIPAAm-PEG three-dimensional (3D) hydrogel. Transplantation of 3D-derived striatal progenitors into a transgenic mouse model of HD slowed disease progression, improved motor coordination, and increased survival. In addition, the transplanted cells developed an MSN-like phenotype and formed synaptic connections with host cells. Our results illustrate the potential of scalable 3D biomaterials for generating striatal progenitors for HD cell therapy.


Assuntos
Corpo Estriado/patologia , Doença de Huntington/patologia , Doença de Huntington/terapia , Hidrogéis/farmacologia , Células-Tronco Pluripotentes/transplante , Potenciais de Ação/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Proteínas Hedgehog/metabolismo , Humanos , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Fenótipo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos
5.
Sci Adv ; 3(12): eaar3952, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29279867

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal and incurable neurodegenerative disease characterized by the progressive loss of motor neurons in the spinal cord and brain. In particular, autosomal dominant mutations in the superoxide dismutase 1 (SOD1) gene are responsible for ~20% of all familial ALS cases. The clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas9) genome editing system holds the potential to treat autosomal dominant disorders by facilitating the introduction of frameshift-induced mutations that can disable mutant gene function. We demonstrate that CRISPR-Cas9 can be harnessed to disrupt mutant SOD1 expression in the G93A-SOD1 mouse model of ALS following in vivo delivery using an adeno-associated virus vector. Genome editing reduced mutant SOD1 protein by >2.5-fold in the lumbar and thoracic spinal cord, resulting in improved motor function and reduced muscle atrophy. Crucially, ALS mice treated by CRISPR-mediated genome editing had ~50% more motor neurons at end stage and displayed a ~37% delay in disease onset and a ~25% increase in survival compared to control animals. Thus, this study illustrates the potential for CRISPR-Cas9 to treat SOD1-linked forms of ALS and other central nervous system disorders caused by autosomal dominant mutations.


Assuntos
Esclerose Lateral Amiotrófica/genética , Edição de Genes/métodos , Terapia Genética/métodos , Superóxido Dismutase-1/genética , Esclerose Lateral Amiotrófica/mortalidade , Esclerose Lateral Amiotrófica/terapia , Animais , Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas , Modelos Animais de Doenças , Feminino , Vetores Genéticos , Genoma , Humanos , Locomoção , Masculino , Camundongos Transgênicos , Mutação , RNA Guia de Cinetoplastídeos , Medula Espinal/citologia , Medula Espinal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA