RESUMO
Sesquiterpenoids constitute the largest subgroup of terpenoids that have numerous applications in pharmaceutical, flavor, and fragrance industries as well as biofuels. Bergamotenes, a type of bicyclic sesquiterpenes, are found in plants, insects, and fungi with α-trans-bergamotene as the most abundant compound. Bergamotenes and their related structures (Bergamotane sesquiterpenoids) have been shown to possess diverse biological activities such as antioxidant, anti-inflammatory, immunosuppressive, cytotoxic, antimicrobial, antidiabetic, and insecticidal effects. However, studies on their biotechnological potential are still limited. This review compiles the characteristics of bergamotenes and their related structures in terms of occurrence, biosynthesis pathways, and biological activities. It further discusses their functionalities and potential applications in pharmaceutical, nutraceuticals, cosmeceuticals, and pest management sectors. This review also opens novel perspectives in identifying and harnessing bergamotenes for pharmaceutical and agricultural purposes.
RESUMO
BACKGROUND: The Hessian fly response genes, Hfr-1 and Hfr-2, have been reported to be significantly induced in a Hessian fly attack. Nothing is known about the allelic variants of these two genes in susceptible (S) and resistant (R) wheat cultivars. RESULTS: Basic local alignment search tool (BLAST) analysis of Hessian fly response genes have identified three alleles of Hessian fly response gene 1 (Hfr-1) on chromosome 4AL and 7DS, and 10 alleles of Hessian fly response gene 2 (Hfr-2) on chromosome 2BS, 2DL, 4BS, 4BL, 5AL and 5BL. Resequencing exons of Hfr-1 and Hfr-2 have identified a single nucleotide polymorphism (SNP) in the lectin domain of each gene that segregates some R sources from S cultivars. Two SNP assays have been developed. The SNP883_Hfr-1 assay characterizes a 'G/A' SNP in Hfr-1, which differentiates 14 Hessian fly R cultivars from S ones. The SNP1294_Hfr-2 assay differentiates 12 R cultivars from S ones. Each of the two SNPs identified in Hfr-1 and Hfr-2 is 'G/A' and resulted in an amino acid change from isoleucine to valine in the lectin domain of the proteins of the alleles in the R cultivars. In addition to the genotype profiles of Hfr-1 and Hfr-2, generated for a set of 249 wheat cultivars which included a set of 39 R cultivars, this study has genotyped the Hessian fly response gene, HfrDrd, and the H32 gene for the wheat germplasm. Resistant cultivars from different origins with one, two, three or four resistance (R) genes in various combinations/permutations have been identified. CONCLUSION: This study has identified allelic differences in two Hessian fly response genes, Hfr-1 and Hfr-2, between S and R cultivars and developed one SNP assay for each of the genes. These two SNP assays for Hfr-1 and Hfr-2, together with the published assays for HfrDrd and the H32 gene, can be used for the selection and incorporation of one or more of these 4 R genes identified in the different R sources in wheat breeding programs.
Assuntos
Nematóceros , Melhoramento Vegetal , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Seleção Artificial , Triticum/genética , Triticum/parasitologia , Animais , Genes de Plantas , Técnicas Genéticas , Polimorfismo de Nucleotídeo Único , Seleção GenéticaRESUMO
Species in the stem gall midge genus Mayetiola (Diptera: Cecidomyiidae) cause serious damage to small grain crops. Among Mayetiola species are Hessian fly (Mayetiola destructor Say), barley midge (Mayetiola hordei Keiffer), and oat midge (Mayetiola avenae Marchal). Larvae of these species inject saliva into host tissues to manipulate plants. To identify putative effectors, transcriptomic analyses were conducted on transcripts encoding secreted salivary gland proteins (SSGPs) from first instar larvae of the barley and oat midges, since SSGPs are the most likely source for effector proteins delivered into host tissues. From barley midge, 178 SSGP-encoding unigenes were identified, which were sorted into 51 groups. From oat midge, 194 were obtained and sorted into 50 groups. Predicted proteins within a group had a highly conserved secretion signal peptide and shared at least 30% amino acid identity. Among the identified unigenes from both barley and oat midges, ~68% are conserved either among the three species or between two of them. Conserved SSGPs included members belonging to SSGP-1, SSGP-4, SSGP-11, and SSGP-71 families. Unconventional conservation patterns exist among family members within a species and among different gall midges, indicating that these genes are under high selection pressure, a characteristic of effector genes. SSGPs that are unique to each species were also identified. Those conserved SSGPs may be responsible for host manipulation since the three gall midges produce identical phenotypic symptoms to host plants, whereas the SSGPs unique to each species may be responsible for different host specificity.
Assuntos
Dípteros/genética , Proteínas de Insetos/genética , Proteínas e Peptídeos Salivares/genética , Sequência de Aminoácidos , Animais , Dípteros/crescimento & desenvolvimento , Dípteros/metabolismo , Perfilação da Expressão Gênica , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Proteínas e Peptídeos Salivares/química , Proteínas e Peptídeos Salivares/metabolismo , Alinhamento de Sequência , Especificidade da EspécieRESUMO
The Hessian fly, Mayetiola destructor, is a destructive pest of wheat worldwide and mainly controlled by deploying resistant cultivars. In this study, we investigated the genes that were expressed differentially between larvae in resistant plants and those in susceptible plants through RNA sequencing on the Illumina platform. Informative genes were 11,832, 14,861, 15,708, and 15,071 for the comparisons between larvae in resistant versus susceptible plants for 0.5, 1, 3, and 5 days, respectively, after larvae had reached the feeding site. The transcript abundance corresponding to 5401, 6902, 8457, and 5202 of the informative genes exhibited significant differences (p ≤ 0.05) in the respective paired comparisons. Overall, genes involved in nutrient metabolism, RNA and protein synthesis exhibited lower transcript abundance in larvae from resistant plants, indicating that resistant plants inhibited nutrient metabolism and protein production in larvae. Interestingly, the numbers of cytochrome P450 genes with higher transcript abundance in larvae from resistant plants were comparable to, or higher than those with lower transcript abundance, indicating that toxic chemicals from resistant plants may have played important roles in Hessian fly larval death. Our study also identified several families of genes encoding secreted salivary gland proteins (SSGPs) that were expressed at early stage of 1(st) instar larvae and with more genes with higher transcript abundance in larvae from resistant plants. Those SSGPs are candidate effectors with important roles in plant manipulation.
Assuntos
Dípteros/metabolismo , Animais , Sistema Enzimático do Citocromo P-450/metabolismo , Dípteros/patogenicidade , Larva/metabolismo , Larva/patogenicidade , Glândulas Salivares/metabolismo , Proteínas e Peptídeos Salivares/metabolismo , Triticum/parasitologiaRESUMO
At the intersection of insect control and sustainability goals, dielectric heating emerges as a promising solution. In agriculture, where insect pests can reduce agricultural yields and the nutritional quality of crops under field and storage conditions. Chemical pesticides are often used to manage pests but owing to their deleterious consequences on humans and the environment, chemical-free treatments have become the preferred option. Among the existing options, applying radio frequency (RF) and microwave energy for the purpose of dielectric heating has proven to be a successful alternative to chemical pesticides for controlling some major insect pests. This review offers an overview of dielectric heating for pest control in both storage settings and field environments, which addresses pests that impact materials with varying moisture contents (MC). The review highlights the limitation of this technology in controlling insect pests within bulk materials, leading to non-uniform heating. Additionally, it discusses the application of this technology in managing pests affecting materials with high MC, which can result in the degradation of the host material's quality. The review suggests the combination of different techniques proven effective in enhancing heating uniformity, as well as leveraging the non-thermal effects of this technology to maintain the quality of the host material. This is the first review providing an overview of the challenges associated with employing this technology against high moisture content (MC) materials, making it more advantageous for controlling storage pests. Overall, the review indicates that research should particularly emphasize the utilization of this sustainable technology against insect pests that inflict damage on high (MC) substances.
RESUMO
Cool season legumes (Faba bean, chickpea, lentil, pea, and grass pea) are important protein harvests for food and nutrition security in many countries. They play key roles in sustainable cereal production through their ecological benefits. However, diseases and pests attack continue to have a substantial impact on crop yield and quality. Although growers used different control options to manage these biotic stresses such as pesticide application, cultural practices, and resistant varieties, there is a pressing need for the development of new, more cost-effective and environmentally friendly solution to help farmers in facing the existing environmental issues. Recently, there is a growing interest among researchers in exploiting Volatile Organic Compounds (VOCs) for the elaboration of disease and pest control strategies in food legumes and other crops. These compounds have important functions in ecological relationships occurring between plants and their surrounding environment, as well as plants and others species, such as pests and pathogens. Due to their unique properties, VOCs can be employed in improving management alternatives for food legume diseases and pests. In this assessment, we investigated the role of VOCs in plant-pest and plant-pathogen interactions and their present applications in pest and diseases control strategies. We emphasized the ecological importance of employing plant VOCs in legume farming and crop breeding. Additionally, we highlighted the potential of microbial VOCs in facilitating microbe-microbe, microbe-plant and microbe-plant-pest interactions, along with their role in food legume protection.
RESUMO
The use of essential oils has emerged as an ecofriendly solution for controlling different pests, particularly insects of stored products. Essential oils (EOs) from Thymus capitatus (TC) and Origanum compactum (OC) have received less attention for these bioactivities. Therefore, our study aimed to assess the repellent, antifeedant and contact toxicity of their EOs against a major stored product pest Tribolium castaneum. Besides, GC-MS was also carried out to determine the compounds responsible for the observed bioactivities. Regarding contact toxicity, LC50 values were 0.58 and 0.35 µL/cm2 for TC and OC after 24 h of exposure, respectively. For the repellent effect, the percentage of repellency (PR) was variable across different concentrations and exposure durations. TC exhibited the best PR (98%) after 3 h of exposure at 0.031 µL/cm2. For prolonged repulsive effect (24 h), TC sustained its repulsive efficacy with a PR of 90% at 0.062 µL/cm2 followed by OC with a PR of 88% at 0.125 µL/cm2. As for the antifeedant effect, both EOs had a significant impact on nutritional indexes, especially the feeding deterrent index and relative consumption rate. OC displayed a notable effect, causing 59% of feeding deterrence at 1.92 µL/pellet. These multifaced effects can be explained by the high content of carvacrol in both EOs (OC: 90% and TC: 78%). These multifaced effects demonstrated through different exposure routes and bioassays promote the use of T. capitatus and O. compactum EOs as a sustainable management strategy to control T. castaneum.
RESUMO
BACKGROUND: MicroRNAs (miRNAs) are small non-coding RNAs that play critical roles in regulating post transcriptional gene expression. Gall midges encompass a large group of insects that are of economic importance and also possess fascinating biological traits. The gall midge Mayetiola destructor, commonly known as the Hessian fly, is a destructive pest of wheat and model organism for studying gall midge biology and insect - host plant interactions. RESULTS: In this study, we systematically analyzed miRNAs from the Hessian fly. Deep-sequencing a Hessian fly larval transcriptome led to the identification of 89 miRNA species that are either identical or very similar to known miRNAs from other insects, and 184 novel miRNAs that have not been reported from other species. A genome-wide search through a draft Hessian fly genome sequence identified a total of 611 putative miRNA-encoding genes based on sequence similarity and the existence of a stem-loop structure for miRNA precursors. Analysis of the 611 putative genes revealed a striking feature: the dramatic expansion of several miRNA gene families. The largest family contained 91 genes that encoded 20 different miRNAs. Microarray analyses revealed the expression of miRNA genes was strictly regulated during Hessian fly larval development and abundance of many miRNA genes were affected by host genotypes. CONCLUSION: The identification of a large number of miRNAs for the first time from a gall midge provides a foundation for further studies of miRNA functions in gall midge biology and behavior. The dramatic expansion of identical or similar miRNAs provides a unique system to study functional relations among miRNA iso-genes as well as changes in sequence specificity due to small changes in miRNAs and in their mRNA targets. These results may also facilitate the identification of miRNA genes for potential pest control through transgenic approaches.
Assuntos
Dípteros/genética , Evolução Molecular , Interações Hospedeiro-Parasita/genética , MicroRNAs/genética , Animais , Biologia Computacional , Sequência Conservada/genética , Dípteros/patogenicidade , Regulação da Expressão Gênica de Plantas , Genoma de Inseto , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs/isolamento & purificação , Controle Biológico de Vetores , Triticum/genética , Triticum/parasitologiaRESUMO
BACKGROUND: Wheat - Hessian fly interaction follows a typical gene-for-gene model. Hessian fly larvae die in wheat plants carrying an effective resistance gene, or thrive in susceptible plants that carry no effective resistance gene. RESULTS: Gene sets affected by Hessian fly attack in resistant plants were found to be very different from those in susceptible plants. Differential expression of gene sets was associated with differential accumulation of intermediates in defense pathways. Our results indicated that resources were rapidly mobilized in resistant plants for defense, including extensive membrane remodeling and release of lipids, sugar catabolism, and amino acid transport and degradation. These resources were likely rapidly converted into defense molecules such as oxylipins; toxic proteins including cysteine proteases, inhibitors of digestive enzymes, and lectins; phenolics; and cell wall components. However, toxicity alone does not cause immediate lethality to Hessian fly larvae. Toxic defenses might slow down Hessian fly development and therefore give plants more time for other types of defense to become effective. CONCLUSION: Our gene expression and metabolic profiling results suggested that remodeling and fortification of cell wall and cuticle by increased deposition of phenolics and enhanced cross-linking were likely to be crucial for insect mortality by depriving Hessian fly larvae of nutrients from host cells. The identification of a large number of genes that were differentially expressed at different time points during compatible and incompatible interactions also provided a foundation for further research on the molecular pathways that lead to wheat resistance and susceptibility to Hessian fly infestation.
Assuntos
Parede Celular/metabolismo , Dípteros/fisiologia , Metabolismo dos Lipídeos , Triticum/citologia , Triticum/metabolismo , Animais , Perfilação da Expressão Gênica , Genes de Plantas/genética , Vermelho Neutro/metabolismo , Permeabilidade , Triticum/genética , Triticum/fisiologia , Regulação para CimaRESUMO
Africa benefits from diverse biomasses that are rich in high-added value materials and precursors for energy, food, agricultural, cosmetic and medicinal applications. Many African countries are interested in valorizing biomasses to develop efficient and integrated biorefinery processes and their use for local and regional economic development. Thus, this report critically reviews the current status of African biomass richness, its diversity, and potential applications. Moreover, particular attention is given to bioenergy production, mainly by biological and thermochemical conversion processes. This also includes biomass valorization in agriculture, particularly for the production of plant-based biostimulants, which are a potential emerging agri-input sector worldwide. This study points out that even though several processes for biofuel, biogas, biofertilizer and biostimulant production have already been established in Africa, their development on a larger scale remains limited. This study also reports the different socioeconomic and political aspects of biomass applications, along with their challenges, opportunities, and future research perspectives, to promote concrete technologies transferable into an industrial level.
Assuntos
Desenvolvimento Econômico , Indústrias , Biomassa , Agricultura , Tecnologia , BiocombustíveisRESUMO
The Opuntia ficus-indica (L.) cactus, a crucial crop in Morocco, is threatened by the wild cochineal, Dactylopius opuntiae (Cockerell). The aim of this research was to investigate the efficacy of nine bacterial strains against both D. opuntiae nymphs and adults females applied individually or after black soap in the laboratory, greenhouse, and field conditions. Using the partial 16S ribosomal DNA, the bacterial isolates were identified as Pseudomonas koreensis, Pseudomonas sp., Burkholderia sp. and Bacillus sp. Under laboratory conditions, the insecticidal activity of P. koreensis strain 66Ms.04 showed the level mortality (88%) of adult females' at 108 CFU/mL, 7 days after application. At a concentration of 108 CFU/mL, P. koreensis strain 66Ms.04 and Pseudomonas sp. (strains 37 and 5) caused 100% nymphs mortality rate three days after application. Under greenhouse conditions, the use of P. koreensis strain 66Ms.04 at 108 CFU/mL following the application of black soap (60 g/L) demonstrated the maximum levels of females and nymphs' mortalities with 80 and 91.25%, respectively, after 8 days of treatment. In field conditions, the combined application of the P. koreensis strain 66Ms.04 at 108 CFU/mL with black soap at 60 g/L, for an interval of 7 days, significantly increased the mortality of adult females to 93.33% at 7 days after the second application. These findings showed that the combined treatment of P. koreensis strain 66Ms.04 with black soap can be a potent and eco-friendly pesticide against D. opuntiae.
Assuntos
Hemípteros , Opuntia , Animais , Feminino , Agentes de Controle Biológico , Marrocos , Virulência , Sabões , Hemípteros/genética , CarmimRESUMO
The stem borer weevil, Lixus algirus L. (Coleoptera: Curculionidae), causes severe damage to faba beans (Vicia faba L.) in Morocco. A survey was conducted to determine the distribution of L. algirus, its natural enemies, and the severity of damage it causes to faba beans in Morocco. A total of 16 and 27 stops were randomly selected and surveyed in the major faba bean-growing regions during the years 2017 and 2018, respectively. The Gharb region recorded the highest level of L. algirus infestation at 80% and 71.42% in 2017 and 2018, respectively, followed by the Saïs region at 58.75% and 36% in 2017 and 2018, respectively. Two egg parasitoids (Chlorocytuslixi and Anaphes longicornis), one egg predator (Orius sp.), and a larval parasitoid (Cyanopterobracon) were identified. The ectoparasitoid C. lixi was observed to be the most dominant species, with percentages of parasitism in the regions ranging between 35.75% and 70.49%. The larval parasitoid Cyanopterobracon was the second most abundant species, with percentages of parasitism ranging between 3.03% to 15.96%. Understanding the parasitoid complex of L. algirus in Morocco is necessary for the subsequent development of a biological control program.
RESUMO
Caper (Capparis spinosa L.) is a perennial shrub of the family Capparaceae, endemic to circum-Mediterranean countries. Caper carries a renowned nutritional value, especially in terms of vitamins and antioxidants related to the occurrence of flavonoids, alkaloids, and glucosinolates as main secondary metabolites. Caper extracts have also shown to display antibacterial, antifungal, analgesic, antitumor, hepatoprotective, antioxidant, anti-inflammatory, and neuroprotective effects which correlate the uses of the plant in folk medicine against both metabolic and infectious diseases. The present review aims to provide exhaustive phytochemistry and pharmacological properties survey on Caper constituents. Attention has also been given to the nutritional values and traditional uses of main organs to pinpoint research gaps for future investigations on the plant.
RESUMO
The wild cochineal Dactylopius opuntiae (Hemiptera: Dactylopiidae) is one of the major insect pests of the prickly pear Opuntia ficus-indica (L.) in Morocco, a well-known fruit and vegetable crop of arid and semi-arid regions around the world. The present study investigated the insecticidal potential of six extracts (three aqueous and three hydroalcoholic (MeOH/H2O, 20/80 (v/v)) from Atriplex halimus (leaves), Salvia rosmarinus (leaves) and Cuminum cyminum (seeds) to control nymphs and adult females of D. opuntiae under laboratory and greenhouse conditions. Out of the tested samples, A. halimus aqueous extract showed the highest activity, inducing mortality rates of 67.04% (after 4 days) and 85% (after 8 days) on nymphs and adult females of D. opuntiae, respectively, at a concentration of 5% under laboratory conditions. It also showed the highest mortality rate of nymphs with 100% (4 days after application) and 83.75% of adult females (7 days after the second application) at a concentration of 5% when combined with black soap at 10 g/L under greenhouse conditions. The difference in the toxicity of plant species of the study was correlated with their saponin content. A total of 36 of these triterpene glucosides were suggested after a comprehensive LC-MSn profiling of the most active extract, A. halimus, in addition to phytoecdysones and glycosylated phenolic acids and flavonoids. These findings provided evidence that the aqueous leaf extract of A. halimus could be incorporated in the management of the wild cochineal as an alternative to chemical insecticides.
RESUMO
Even though host plant resistance has long been recognized as the foundation of integrated pest management, research in North Africa, West and Central Asia only started in 1980. The recent use of Focused Identification of Germplasm Strategy has increased the chance of finding sources of resistance to cereal and food legume pests. The resistant sources have been successfully used in breeding programs to develop resistant germplasm to key cereal and legume pests. The first major locus associated with resistance to Sunn pest at vegetative stage was identified in bread wheat as were two new loci for Hessian fly resistance from Triticum dicoccum and T. araraticum. Combined sources of resistance to several pests have been identified in alien translocation wheat lines.
Assuntos
Grão Comestível/genética , Fabaceae/genética , Herbivoria , Insetos/fisiologia , Defesa das Plantas contra Herbivoria , África do Norte , Animais , Ásia Central , Produtos Agrícolas/genética , Oriente Médio , Melhoramento VegetalRESUMO
Pea aphid (Acyrthosiphon pisum Harris) is the major insect pest of lentil in Morocco. We investigated pea aphid mean numbers and yield losses on three lentil varieties at one location during three successive cropping seasons during 2015-2018. The effects of several weather factors on pea aphid population dynamics were investigated. Population density increased in early spring followed by several peaks during March-April and then steeply declined during the late spring. Aphid populations peaked at different times during the three years of the study. In 2016, higher populations occurred during the second and third weeks of April for Abda and Zaria varieties with averages of 27 and 28 aphids/20 twigs, respectively. In 2017, higher populations occurred on the 12th and 13th standard meteorological weeks (SMWs) for Zaria with averages of 24.7 and 27.03 aphids/20 twigs, respectively. In 2018, the population peaked for all varieties at three different times, 11th, 13th, and 17th SMW, with the highest for Zaria being 26.00, 47.41, and 32.33 aphids/20 twigs. Pea aphid population dynamics changed with weather conditions. The number of aphids significantly and positively correlated with maximum temperature, but significantly negatively correlated with relative humidity and wind speed. The minimum temperature and rainfall had non-significant correlations. Pea aphid infestation resulted in losses of total seed weight for all lentil varieties, with the highest avoidable losses for Bakria being 12.51% followed by Zaria with 7.72% and Abda with 4.56%. These losses may justify the development of integrated management options for control of this pest.
RESUMO
The genus Peganum constitutes one of the perennial groups of plants of semi-arid regions across the world. It produces diverse classes of metabolites with claimed valuable pharmacological applications. Despite the key chemical and biological properties of the genus, its allelopathy or that of one of its species has not been reviewed yet. Thus, the present survey aims to report the agricultural applications of extracts, fractions, and compounds from the genus Peganum. This work was based on the available literature related to both the Peganum genus and agriculture, which were generated from available high-impact scientific engines. The plants in this genus contain a large group of secondary metabolites including phenolic compounds, terpenes, and N-containing compounds. Alkaloids, as the main components of the extracts from plants in the genus, were identified as the major active principles. The toxicity of Peganum isolates against plants and related pest organisms was also reviewed. Extract preparations from species of Peganum were listed among insecticidal and herbicidal allelochemicals used for crop protection. The review also tried to contextualize natural products in agriculture. Peganum plant extracts and fractions have showed significant potential in weed and crops management, soil health, and biopesticide production.
RESUMO
The carmine cochineal Dactylopius opuntiae (Cockerell) is the major insect pest of the prickly-pear cactus Opuntia ficus-indica (L.) in Morocco. The present study investigated the insecticidal activities of six essential oils (EOs) against nymphs and adult females of D. opuntiae applied singly or in combination with a detergent under laboratory and field conditions. Under laboratory conditions, M. pulegium and O. vulgare L. essential oils showed a high level of insecticidal activity at 5%, with 98% and 92% females' mortality, respectively, 5 days after treatments. The M. pulegium and O. vulgaris oils at 5% applied in combination with black soap at (60 g/L) induced the highest toxic activity on adult females, 100% and 96% at 5 days after treatments, respectively. Under field conditions, M. pulegium and O. vulgare oils at 5% in combination with black soap (60 g/L) showed the highest adult female mortalities with 96.33 and 92.56%, respectively, 7 days after the first application. The double application of M. pulegium oil at 5% significantly increased the mortality of adult females up to 91%, 5 days after the second spray. GC-MS analysis revealed that the most abundant constituent of M. pulegium and O. vulgare oils was pulegone (84.69%) and durenol (76.53%), respectively. These findings showed that the use of M. pulegium and O. vulgare in combination with black soap or in double sprays could be incorporated in the management package for the control of the wild cochineal D. opuntiae, as a safe and natural alternative to chemical insecticides.
RESUMO
Sunn pest, Eurygaster integriceps, Puton, infested and uninfested wheat seeds were obtained from the International Center for Agriculture Research in the Dry Areas (ICARDA), Aleppo, Syria, with the primary objective to identify the type of enzyme deposited by the Sunn pest on the wheat responsible for the gluten degradation. Enzyme levels were extremely low due to the enzyme being secreted by the insect in localized areas on the seed. Only extract from the infested wheat contained glutenase activity. Anion exchange, Cu(2+) sepharose, and gel filtration chromatography were used to partially purify and enrich protein samples from both infested wheat and uninfested wheat. An SDS-gluten assay was used to show gluten specificity while a commercially available chromogenic proline peptide, benzyloxycarbonyl-Gly-Pro-p-nitroanalide (ZGPpNA), was utilized to identify fractions containing the active proline specific enzyme activity and to determine Michaelis-Menten kinetics. Despite low levels of enzyme on the infested wheat, the enzyme was partially purified and enriched exhibiting a specific activity of 4.5 U/mg of total protein for gluten in a SDS gluten assay (1 U of enzyme activity was defined as the decrease in gel height in millimeters in 1 h) and exhibited a high-affinity Km of 65 microM for ZGPpNA, cleaving at the carboxy terminus of the proline residue. The enzyme exhibited optimal activity between pH 8 and 10.0 at temperatures between 20 degrees and 35 degrees C. The enzyme was identified to be a prolyl endoprotease.
Assuntos
Heterópteros/enzimologia , Serina Endopeptidases/metabolismo , Triticum/parasitologia , Animais , Cromatografia de Afinidade , Cromatografia em Gel , Eletroforese em Gel de Poliacrilamida , Concentração de Íons de Hidrogênio , Cinética , Prolil Oligopeptidases , Sementes/enzimologia , Temperatura , Triticum/metabolismoRESUMO
The Russian wheat aphid, Diruaphis noxia (Kudjumov) (Hemiptera: Aphididae), is globally one of the most devastating pests of bread wheat, Tritium aestivum L., durum wheat, Triticum turgidum L., and barley, Hordeum vulgare L. Several sources of D. noxia resistance have been incorporated in commercial wheat and barley genotypes, but up to eight virulent biotypes, defined based on their ability to damage different wheat and barley genotypes, now occur across the western United States since the first appearance of D. noxia in North America in 1986. Critical to the study of D. noxia and other invasive species is an understanding of the number and origin of invasions that have occurred, as well as the rate or potential of postinvasion adaptation and geographic range expansion. The goal of this study was to determine whether D. noxia biotypes are by-products of a single invasion or multiple invasions into North America. We used the genome-wide technique of amplified fragment length polymorphisms, in combination with 22 collections of D. noxia from around the world, to assess this question, as well as patterns of genetic divergence. We found multiple lines of evidence that there have been at least two D. noxia invasions of different origin into North America, each resulting in subsequent postinvasion diversification that has since yielded multiple biotypes.