Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Stem Cells ; 39(5): 636-649, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33480126

RESUMO

Angiotensin-converting enzyme (ACE), a key element of the renin-angiotensin system (RAS), has recently been identified as a new marker of both adult and embryonic human hematopoietic stem/progenitor cells (HSPCs). However, whether a full renin-angiotensin pathway is locally present during the hematopoietic emergence is still an open question. In the present study, we show that this enzyme is expressed by hematopoietic progenitors in the developing mouse embryo. Furthermore, ACE and the other elements of RAS-namely angiotensinogen, renin, and angiotensin II type 1 (AT1) and type 2 (AT2) receptors-are expressed in the paraaortic splanchnopleura (P-Sp) and in its derivative, the aorta-gonad-mesonephros region, both in human and mouse embryos. Their localization is compatible with the existence of a local autocrine and/or paracrine RAS in these hemogenic sites. in vitro perturbation of the RAS by administration of a specific AT1 receptor antagonist inhibits almost totally the generation of blood CD45-positive cells from dissected P-Sp, implying that angiotensin II signaling is necessary for the emergence of hematopoietic cells. Conversely, addition of exogenous angiotensin II peptide stimulates hematopoiesis in culture, with an increase in the number of immature c-Kit+ CD41+ CD31+ CD45+ hematopoietic progenitors, compared to the control. These results highlight a novel role of local-RAS during embryogenesis, suggesting that angiotensin II, via activation of AT1 receptor, promotes the emergence of undifferentiated hematopoietic progenitors.


Assuntos
Angiotensina II/genética , Angiotensinogênio/genética , Células-Tronco Hematopoéticas/citologia , Receptor Tipo 1 de Angiotensina/genética , Sistema Renina-Angiotensina/genética , Animais , Aorta/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/genética , Hematopoese/efeitos dos fármacos , Hematopoese/genética , Transplante de Células-Tronco Hematopoéticas , Humanos , Antígenos Comuns de Leucócito/genética , Camundongos , Peptídeos/farmacologia , Peptidil Dipeptidase A/genética , Receptor Tipo 2 de Angiotensina/genética , Renina/genética , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/citologia
2.
Immunol Cell Biol ; 94(4): 342-56, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26510892

RESUMO

Wharton's jelly mesenchymal stromal cells (WJ-MSCs) are promising candidates for tissue engineering, as their immunomodulatory activity allows them to escape immune recognition and to suppress several immune cell functions. To date, however, few studies have investigated the effect of differentiation of the MSCs on this immunomodulation. To address this question, we sought to determine the impact of differentiation toward endothelial cells on immunoregulation by WJ-MSCs. Following differentiation, the endothelial-like cells (ELCs) were positive for CD31, vascular endothelial cadherin and vascular endothelial growth factor receptor 2, and able to take up acetylated low-density lipoproteins. The expression of HLA-DR and CD86, which contribute to MSCs immunoprivilege, was still weak after differentiation. We then co-cultured un- and differentiated MSCs with immune cells, under conditions of both direct and indirect contact. The proliferation and phenotype of the immune cells were analyzed and the mediators secreted by both ELCs and WJ-MSCs quantified. Interleukin (IL)-6, IL-1ß, prostaglandin E2 and in particular indoleamine-2,3-dioxygenase expression were upregulated in ELCs on stimulation by T and NK cells, suggesting the possible involvement of these factors in allosuppression. ELCs co-cultured with T cells were able to generate CD25(+) T cells, which were shown to be of the CD4(+)CD25(+)FoxP3(+) regulatory subset. Direct contact between NK cells and ELCs or WJ-MSCs decreased the level of NK-activating receptor natural-killer group 2, member D. Moreover, direct co-culturing with ELCs stimulates CD73 acquisition on NK cells, a mechanism which may induce adenosine secretion by the cells and lead to an immunosuppressive function. Taken together, our results show that ELCs obtained following differentiation of WJ-MSCs remain largely immunosuppressive.


Assuntos
Células Endoteliais/fisiologia , Células Matadoras Naturais/fisiologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/fisiologia , Linfócitos T Reguladores/fisiologia , 5'-Nucleotidase/metabolismo , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Citocinas/metabolismo , Feminino , Fatores de Transcrição Forkhead/metabolismo , Humanos , Terapia de Imunossupressão , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo
3.
Cell Death Dis ; 15(5): 305, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38693109

RESUMO

Zebrafish is widely adopted as a grafting model for studying human development and diseases. Current zebrafish xenotransplantations are performed using embryo recipients, as the adaptive immune system, responsible for host versus graft rejection, only reaches maturity at juvenile stage. However, transplanted primary human hematopoietic stem/progenitor cells (HSC) rapidly disappear even in zebrafish embryos, suggesting that another barrier to transplantation exists before the onset of adaptive immunity. Here, using a labelled macrophage zebrafish line, we demonstrated that engraftment of human HSC induces a massive recruitment of macrophages which rapidly phagocyte transplanted cells. Macrophages depletion, by chemical or pharmacological treatments, significantly improved the uptake and survival of transplanted cells, demonstrating the crucial implication of these innate immune cells for the successful engraftment of human cells in zebrafish. Beyond identifying the reasons for human hematopoietic cell engraftment failure, this work images the fate of human cells in real time over several days in macrophage-depleted zebrafish embryos.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas , Macrófagos , Peixe-Zebra , Peixe-Zebra/embriologia , Animais , Macrófagos/metabolismo , Humanos , Células-Tronco Hematopoéticas/metabolismo , Transplante de Células-Tronco Hematopoéticas/métodos , Embrião não Mamífero/metabolismo , Transplante Heterólogo , Fagocitose
4.
Front Bioeng Biotechnol ; 10: 884069, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35769101

RESUMO

The extracellular matrix (ECM) offers the opportunity to create a biomaterial consisting of a microenvironment with interesting biological and biophysical properties for improving and regulating cell functions. Animal-derived ECM are the most widely used as an alternative to human tissues that are of very limited availability. However, incomplete decellularization of these tissues presents a high risk of immune rejection and disease transmission. In this study, we present an innovative method to extract human ECM derived from the Wharton's jelly (WJ-ECMaa) of umbilical cords as a novel biomaterial to be used in tissue engineering. WJ-ECMaa was very efficiently decellularized, suggesting its possible use in allogeneic conditions. Characterization of its content allowed the identification of type I collagen as its main component. Various other matrix proteins, playing an important role in cell adhesion and proliferation, were also detected. WJ-ECMaa applied as a surface coating was analyzed by fluorescent labeling and atomic force microscopy. The results revealed a particular arrangement of collagen fibers not previously described in the literature. This biomaterial also presented better cytocompatibility compared to the conventional collagen coating. Moreover, it showed adequate hemocompatibility, allowing its use as a surface with direct contact with blood. Application of WJ-ECMaa as a coating of the luminal surface of umbilical arteries for a use in vascular tissue engineering, has improved significantly the cellularization of this surface by allowing a full and homogeneous cell coverage. Taking these results together, our novel extraction method of human ECM offers a very promising biomaterial with many potential applications in tissue engineering such as the one presented direct in vascular tissue engineering. Further characterization of the composition and functionality will help explore the ways it can be used in tissue engineering applications, especially as a scaffold or a surface coating.

5.
NPJ Regen Med ; 6(1): 46, 2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34385472

RESUMO

Due to the lack of efficacy of synthetic vascular substitutes in the replacement of small-caliber arteries, vascular tissue engineering (VTE) has emerged as a promising solution to produce viable small-caliber tissue-engineered vascular grafts (TEVG). Previous studies have shown the importance of a cellular intimal layer at the luminal surface of TEVG to prevent thrombotic events. However, the cellularization of a TEVG seems to be a critical approach to consider in the development of a TEVG. To date, no standard cellularization method or cell type has been established to create the ideal TEVG by promoting its long-term patency and function. In this review, advances in VTE are described and discussed with a particular focus on the construction approaches of cellularized small-caliber TEVGs, the cell types used, as well as their preclinical and clinical applications.

6.
PLoS One ; 12(9): e0184624, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28926599

RESUMO

Amongst extraintestinal manifestations (EIM) occurring in IBD patients, rheumatologic manifestations are the most frequent. Understanding the relationships between arthritis and colitis is a prerequisite to improving the management of these patients. Microbiota of patients with IBD or rheumatologic diseases, like spondyloarthritis (SpA) is modified compared to healthy individual. Thus, we have evaluated the impact of colitis in the development of arthritis in mice and we have analyzed microbiota changes. Collagen-induced arthritis (CIA) was induced at day 0 in DBA1 mice exposed or not to Dextran Sodium Sulfate (DSS) to induce colitis between day 14 and day 21. Animals were monitored regularly for arthritis and colitis severity (clinical score, hindpaw edema). Fecal microbiota was studied by 16S rRNA deep sequencing at critical time points (D14, D14, D21 & D41). At day 41, histological scoring of the intestines and ankles were performed at the end of experiment. Induction of colitis slightly delayed arthritis onset (2 ± 1 days of delay) and reduced its severity (5.75 ± 1.62 in arthritis only group vs 4.00 ± 1.48 in arthritis + colitis group (p = 0.02 at day 28) macroscopically and histologically. In contrast, colitis severity was not influenced by arthritis development. Induction of colitis promoted a modification of microbiota composition and a decrease of α-diversity. Fecal microbiota composition was different between "colitis" and "arthritis+colitis" groups during colitis development. Interestingly a milder decrease of bacterial diversity in the "arthritis+colitis" group was observed. Concomitant experimental colitis protects mice against collagen-induced arthritis and this is associated with changes in gut microbiome composition.


Assuntos
Artrite Experimental/patologia , Colite/patologia , Animais , Tornozelo/patologia , Artrite Experimental/etiologia , Bactérias/genética , Bactérias/isolamento & purificação , Colite/induzido quimicamente , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Fezes/microbiologia , Intestinos/microbiologia , Intestinos/patologia , Lipocalina-2/análise , Masculino , Camundongos , Camundongos Endogâmicos DBA , Microbiota , RNA Ribossômico 16S/química , RNA Ribossômico 16S/isolamento & purificação , RNA Ribossômico 16S/metabolismo , Análise de Sequência de DNA , Índice de Gravidade de Doença
7.
FEBS Lett ; 590(22): 3987-4001, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27597316

RESUMO

The continuous generation of blood cells throughout life relies on the existence of hematopoietic stem cells (HSC) generated during embryogenesis. Given the importance of HSC transplantation in cell-based therapeutic approaches, considerable efforts have been made toward understanding the developmental origins of embryonic HSC. Adult-type HSC are first generated in the aorta-gonad-mesonephros (AGM) region between days 27 and 40 of human embryonic development, but an elusive blood-forming potential is present earlier in the underlying splanchnopleura. It is relatively well accepted that the HSC emerge in the AGM through a hemogenic endothelium, but the direct precursor of this cell type remains to be clearly identified. This review is intended to summarize the recent advances made to understand the origins of hematopoietic stem cells in the early human embryo. In addition, we discuss in detail the discovery of the angiotensin-converting enzyme (ACE) as a novel marker of human HSC and of prehematopoietic precursors inside the embryo.


Assuntos
Desenvolvimento Embrionário/genética , Hematopoese/genética , Células-Tronco Hematopoéticas/citologia , Peptidil Dipeptidase A/genética , Adulto , Animais , Aorta/crescimento & desenvolvimento , Embrião de Mamíferos , Feminino , Gônadas/crescimento & desenvolvimento , Humanos , Camundongos , Gravidez
9.
Tissue Eng Part B Rev ; 20(5): 523-44, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24552279

RESUMO

Due to their self-renewal capacity, multilineage differentiation potential, paracrine effects, and immunosuppressive properties, mesenchymal stromal cells (MSCs) are an attractive and promising tool for regenerative medicine. MSCs can be isolated from various tissues but despite their common immunophenotypic characteristics and functional properties, source-dependent differences in MSCs properties have recently emerged and lead to different clinical applications. Considered for a long time as a medical waste, umbilical cord appears these days as a promising source of MSCs. Several reports have shown that umbilical cord-derived MSCs are more primitive, proliferative, and immunosuppressive than their adult counterparts. In this review, we aim at synthesizing the differences between umbilical cord MSCs and MSCs from other sources (bone marrow, adipose tissue, periodontal ligament, dental pulp,…) with regard to their proliferation capacity, proteic and transcriptomic profiles, and their secretome involved in their regenerative, homing, and immunomodulatory capacities. Although umbilical cord MSCs are until now not particularly used as an MSC source in clinical practice, accumulating evidence shows that they may have a therapeutic advantage to treat several diseases, especially autoimmune and neurodegenerative diseases.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos/normas , Transplante de Células-Tronco Mesenquimais/normas , Células-Tronco Mesenquimais/citologia , Cordão Umbilical/citologia , Animais , Antineoplásicos/metabolismo , Humanos , Geleia de Wharton/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA