Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microorganisms ; 11(9)2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37764171

RESUMO

The ability of microorganisms to promote plant growth and mitigate abiotic and biotic stresses makes them an interesting tool for sustainable agriculture. Numerous studies aim to identify new, promising bacteria isolates. Traditional culture-based methods, which focus on selecting microorganisms with plant-growth-promoting traits, such as hormone production, nutrient solubilization, and antifungal properties, are widely used. This study aims to investigate the role of plant-growth-promoting properties in bacteria-mediated stress mitigation and the suitability of traditional culture-based methods as a screening tool for the identification of beneficial bacteria. To this end, we tested three endophytic Bacillus isolates, which have previously been shown to affect tolerance against iron toxicity in lowland rice, (a) for their effect on the resistance against brown spot disease, and (b) for plant-growth-promoting traits using common culture-based methods. Both B. pumilus isolates inhibited fungal growth in vitro and reduced brown spot disease in two of three rice cultivars in planta, although they tested negative for all plant-growth-promoting traits. While B. megaterium was negative for ACC deaminase activity and nutrient solubilization, it exhibited auxin production. Nevertheless, B. megaterium did not suppress brown spot disease in any of the three rice cultivars. This study shows that bacteria do not necessarily have to possess classical plant-growth-promoting properties in order to be beneficial to plants, and it emphasizes the limitation of common culture-based methods in effectively identifying beneficial bacteria. Moreover, our results highlight the significance of the interaction between bacteria and plant cultivars in determining the beneficial effects of Bacillus spp. on plants under biotic or abiotic stresses.

2.
Plants (Basel) ; 12(20)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37895997

RESUMO

Fusarium spp. are important pathogens on cereals, capable of causing considerable yield losses and significantly reducing the quality of harvested grains due to contamination with mycotoxins. The European Union intends to reduce the use of chemical-synthetic plant protection products (csPPP) by up to 50% by the year 2030. To realize this endeavor without significant economic losses for farmers, it is crucial to have both precise early detection of pathogens and effective alternatives for csPPP. To investigate both the early detection of Fusarium head blight (FHB) and the efficacy of selected biological control agents (BCAs), a pot experiment with spring wheat (cv. 'Servus') was conducted under semi-field conditions. Spikes were sprayed with different BCAs prior to inoculation with a mixture of F. graminearum and F. culmorum conidia. While early detection of FHB was investigated by hyperspectral imaging (HSI), the efficiency of the fungal (Trichoderma sp. T10, T. harzianum T16, T. asperellum T23 and Clonostachys rosea CRP1104) and bacterial (Bacillus subtilis HG77 and Pseudomonas fluorescens G308) BCAs was assessed by visual monitoring. Evaluation of the hyperspectral images using linear discriminant analysis (LDA) resulted in a pathogen detection nine days post inoculation (dpi) with the pathogen, and thus four days before the first symptoms could be visually detected. Furthermore, support vector machines (SVM) and a combination of LDA and distance classifier (DC) were also able to detect FHB symptoms earlier than manual rating. Scoring the spikes at 13 and 17 dpi with the pathogen showed no significant differences in the FHB incidence among the treatments. Nevertheless, there is a trend suggesting that all BCAs exhibit a diminishing effect against FHB, with fungal isolates demonstrating greater efficacy compared to bacterial ones.

3.
Plants (Basel) ; 11(12)2022 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-35736756

RESUMO

Late blight of potato caused by Phytophthora infestans is one of the most damaging diseases affecting potato production worldwide. We screened 357 root fungal endophytes isolated from four solanaceous plant species obtained from Kenya regarding their in vitro antagonistic activity against the potato late blight pathogen and evaluated their performance in planta. Preliminary in vitro tests revealed that 46 of these isolates showed potential activity against the pathogen. Based on their ITS-sequences, 37 out of 46 endophytes were identified to species level, three isolates were connected to higher taxa (phylum or genus), while two remained unidentified. Confrontation assays, as well as assays for volatile or diffusible organic compounds, resulted in the selection of three endophytes (KB1S1-4, KA2S1-42, and KB2S2-15) with a pronounced inhibitory activity against P. infestans. All three isolates produce volatile organic compounds that inhibit mycelial growth of P. infestans by up to 48.9%. The addition of 5% extracts obtained from KB2S2-15 or KA2S1-42 to P. infestans sporangia entirely suppressed their germination. A slightly lower inhibition (69%) was achieved using extract from KB1S1-4. Moreover, late blight symptoms and the mycelial growth of P. infestans were completely suppressed when leaflets were pre-treated with a 5% extract from these endophytes. This might suggest the implementation of such biocontrol candidates or their fungicidal compounds in late blight control strategies.

4.
Metabolites ; 12(6)2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35736440

RESUMO

Attempts have been made to determine the in vitro and in planta suppressive potential of particular Trichoderma strains (T16 and T23) and their secondary metabolites (SMs) against Asian soybean rust (ASR) incited by Phakopsora pachyrhizi. Aside from the previously identified SMs 6-pentyl-α-pyrone (6PAP) and viridiofungin A (VFA), the chemical structures of harzianic acid (HA), iso-harzianic acid (iso-HA), and harzianolide (HZL) were characterized in this study. Our results indicate that exposure of urediospores to 200 ppm 6PAP completely inhibits germination. A slightly higher dosage (250 ppm) of HZL and VFA reduces germination by 53.7% and 44%, respectively. Germ tube elongation seems more sensitive to 6PAP than urediospore germination. On detached leaves, application of conidia of T16 and T23 results in 81.4% and 74.3% protection, respectively. Likewise, 200 ppm 6PAP recorded the highest ASR suppression (98%), followed by HZL (78%) and HA (69%). Treatment of undetached leaves with 6PAP, HA, or HZL reduces ASR severity by 84.2%, 65.8%, and 50.4%, respectively. Disease reduction on the next, untreated trifoliate by T23 (53%), T16 (41%), HZL (42%), and 6PAP (32%) suggests a translocation or systemic activity of the SMs and their producers. To our knowledge, this study provides the first proof for controlling ASR using antifungal SMs of Trichoderma. Our findings strongly recommend the integration of these innovative metabolites, particularly 6PAP and/or their producers in ASR management strategies.

5.
Plants (Basel) ; 10(11)2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34834699

RESUMO

Soil-borne pathogens can severely limit plant productivity. Induced defense responses are plant strategies to counteract pathogen-related damage and yield loss. In this study, we hypothesized that benzoic acid and lettucenin A are involved as defense compounds against Rhizoctonia solani and Olpidium virulentus in lettuce. To address this hypothesis, we conducted growth chamber experiments using hydroponics, peat culture substrate and soil culture in pots and minirhizotrons. Benzoic acid was identified as root exudate released from lettuce plants upon pathogen infection, with pre-accumulation of benzoic acid esters in the root tissue. The amounts were sufficient to inhibit hyphal growth of R. solani in vitro (30%), to mitigate growth retardation (51%) and damage of fine roots (130%) in lettuce plants caused by R. solani, but were not able to overcome plant growth suppression induced by Olpidium infection. Additionally, lettucenin A was identified as major phytoalexin, with local accumulation in affected plant tissues upon infection with pathogens or chemical elicitation (CuSO4) and detected in trace amounts in root exudates. The results suggest a two-stage defense mechanism with pathogen-induced benzoic acid exudation initially located in the rhizosphere followed by accumulation of lettucenin A locally restricted to affected root and leaf tissues.

6.
Front Microbiol ; 11: 597745, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33519736

RESUMO

Fertilization management can affect plant performance and soil microbiota, involving still poorly understood rhizosphere interactions. We hypothesized that fertilization practice exerts specific effects on rhizodeposition with consequences for recruitment of rhizosphere microbiota and plant performance. To address this hypothesis, we conducted a minirhizotron experiment using lettuce as model plant and field soils with contrasting properties from two long-term field experiments (HUB-LTE: loamy sand, DOK-LTE: silty loam) with organic and mineral fertilization history. Increased relative abundance of plant-beneficial arbuscular mycorrhizal fungi and fungal pathotrophs were characteristic of the rhizospheres in the organically managed soils (HU-org; BIODYN2). Accordingly, defense-related genes were systemically expressed in shoot tissues of the respective plants. As a site-specific effect, high relative occurrence of the fungal lettuce pathogen Olpidium sp. (76-90%) was recorded in the rhizosphere, both under long-term organic and mineral fertilization at the DOK-LTE site, likely supporting Olpidium infection due to a lower water drainage potential compared to the sandy HUB-LTE soils. However, plant growth depressions and Olpidium infection were exclusively recorded in the BIODYN2 soil with organic fertilization history. This was associated with a drastic (87-97%) reduction in rhizosphere abundance of potentially plant-beneficial microbiota (Pseudomonadaceae, Mortierella elongata) and reduced concentrations of the antifungal root exudate benzoate, known to be increased in presence of Pseudomonas spp. In contrast, high relative abundance of Pseudomonadaceae (Gammaproteobacteria) in the rhizosphere of plants grown in soils with long-term mineral fertilization (61-74%) coincided with high rhizosphere concentrations of chemotactic dicarboxylates (succinate, malate) and a high C (sugar)/N (amino acid) ratio, known to support the growth of Gammaproteobacteria. This was related with generally lower systemic expression of plant defense genes as compared with organic fertilization history. Our results suggest a complex network of belowground interactions among root exudates, site-specific factors and rhizosphere microbiota, modulating the impact of fertilization management with consequences for plant health and performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA