Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chem Biodivers ; 21(5): e202302112, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38531073

RESUMO

The essential oils of Senecio plants have been used to treat a wide range of ailments. The current study aimed to extract the essential oil of Senecio glaucus obtained from Egypt's Nile delta and determine its chemical profile using GC-MS and NMR analysis. Then, the antimicrobial activity of the oil has been investigated against different fungal and bacterial strains. In addition, its activity as radical scavenger has been evaluated using DPPH, ABTS, and metal chelating techniques. The results revealed the identification of 50 compounds representing 98.80 % of the oil total mass. Sesquiterpenes, including dehydrofukinone (27.15 %) and 4,5-di-epi-aristolochene (10.27 %), as well as monoterpenes, including p-cymene (4.77 %), represented the most predominant constituents. The dehydrofukinone has been isolated and structurally confirmed using 1D and 2D NMR techniques. The oil has showed remarkable antifungal activity against Candida glabrata and C. albicans where the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) values were 3.13 µg/mL and 1.50 µg/mL and 12.50 µg/mL and 6.30 µg/mL, respectively that could be attributed to the sesquiterpene ketones present in the aerial tissues of the plant. Also, this oil inhibited the growth of the tested bacteria with MIC ranging from 12.50-100.00 µg/mL. In comparison to ascorbic acid and Trolox, the EO had remarkable scavenging activity of DPPH, ABTS and metal chelating with IC50 values of 313.17±13.4, 493.83±20.1, and 409.13±16.7 µg/mL. The docking studies of the identified compounds of the oil to different microbial targets, including Gyrase B and α-sterol demethylase, showed that the phytol possessed the best binding affinities toward the active sites of both enzymes with ΔG=-7.42 and -7.78 kcal/mol, respectively. In addition, the phytol revealed the highest binding affinity to tyrosine kinase Hck with ΔG=-7.44 kcal/mol.


Assuntos
Antioxidantes , Cromatografia Gasosa-Espectrometria de Massas , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Senécio , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Senécio/química , Bactérias/efeitos dos fármacos , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Fungos/efeitos dos fármacos , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/isolamento & purificação , Picratos/antagonistas & inibidores , Odorantes/análise , Compostos de Bifenilo/antagonistas & inibidores
2.
Int J Pharm ; 666: 124775, 2024 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-39353498

RESUMO

Myricetin (MYR) is a natural flavonoid that has several biological functions. However, some of its beneficial effects are diminished due to low water solubility, stability, and bioavailability. Herein, several kinds of silica nanoparticles (MCM-41 and SBA-15) were loaded with MYR to improve its biological activity as an analgesic, antipyretic, and anti-inflammatory component, thereby overcoming its drawbacks. The nanoparticles (MYR@SBA-15) were formulated optimally, transforming MYR into an amorphous state. This transformation was confirmed via several strategies, including differential scanning calorimetry, Fourier transform infrared spectroscopy, and powder x-ray diffraction. As a result, there was a significant enhancement in the solubility and rate of dissolution in water. The anti-inflammatory benefits as an innovative strategy and the underlying mechanism of action of MYR and its SBA-15 silica nanoparticles (MYR@SBA-15) were investigated based on the biochemical, histological, immunohistochemical, and metabolomic assays alongside their antipyretic and analgesic characteristics. Compared to the usage of raw MYR, the administration of MYR@SBA-15 at doses of 25, 50, and 100 mg/kg significantly decreases pain perception by inhibiting the body's writhing motions induced by acetic acid. Furthermore, it helps regulate increased body temperature caused by baking yeast and effectively stabilizes it. It reduces the release of NO and PGE-2 in a concentration-dependent manner by down-regulating iNOS and COX-2 expression in the inflammatory model. MYR and MYR@SBA-15 also inhibit the nuclear translocation of NF-κB, downregulate the expression of mitogen-activated protein kinases (MAPKs), such as p38, ERK1/2, and JNK protein, and reduce the generation of proinflammatory cytokines, such as TNF-α. In addition, inflammatory cardinal signs like paw edema caused by carrageenan in rats are greatly suppressed by MYR and MYR@SBA-15 treatment when compared to the untreated group. More noteworthy outcomes are shown in the MYR@SBA-15, particularly at a dose of 100 mg/kg. These results of biochemical and immuno-histochemistry suggest that MYR@SBA-15 may be a useful analgesic antipyretic and may also help reduce inflammation by altering MAPKs/NF-κB and COX-2/PGE-2 signaling cascades. Serum metabolomics study demonstrated modifications in various low molecular weight metabolites with arthritis development. These metabolite levels were restored to normal when MYR@SBA-15 was administered via modulating several metabolic pathways, i.e., pyrimidine, energy metabolism, and proteins. Overall, MYR-loaded SBA-15 silica nanoparticles have demonstrated significant promise in enhancing the disturbed metaboloic pathways and providing a substantial capacity to regulate several oxidative stress and inflammatory mediators.

3.
Heliyon ; 10(13): e33993, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39071580

RESUMO

Background: Quetiapine (QET) abuse has increased due to its anxiolytic and hedonic effects, necessitating protective adjunct treatments. Acacia saligna (A. saligna) flowers, used in traditional medicine, have potential health benefits. Aim: To investigate the protective role of A. saligna flower extract against QET-induced sexual toxicity, and to elucidate the possible underlying mechanisms through metabolomic and physiological studies. Methods: A. saligna extract was subjected to metabolite profiling via High-Resolution Ultra-Performance Liquid Chromatography-Mass Spectrometry (UPLC-ESI-qTOF-MS). Forty-eight adult male albino rats were assigned into six groups for 30 days. The intracavernosal pressure (ICP), semen, biochemical, hormonal, histological, genetic and Western blot (WB) analyses were determined. Results: A. saligna extract is rich in phenolic compounds, flavonoids, tannins, and unsaturated fatty acids. QET significantly decreased ICP and negatively affected semen parameters. A. saligna mitigated decreased sperm motility and ameliorated overexpressed proinflammatory genes in QET-55 group. A. saligna ameliorated the reduction of the antioxidant biomarkers, testosterone, luteinizing hormone (LH), and follicle-stimulating hormone (FSH), concurrent with downregulation of the nuclear factor kappa B (NF-κB) protein. A. saligna counteracted the disrupted testicular and prostatic structures revealed by histological examination. Conclusion: The extract from A. saligna, which contains a high concentration of antioxidants and anti-inflammatory chemicals, effectively mitigates sexual toxicity caused by QET. This study provided the first known explanation of the hypothesized processes behind the protective properties of A. saligna through biological, biochemical, and histological parameters. The results emphasize the potential of A. saligna as a safeguarding agent against drug-induced sexual toxicity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA