Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Electrophoresis ; 45(5-6): 400-410, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38100198

RESUMO

The coupling of capillary electrophoresis (CE) with capacitively coupled contactless conductivity detection (C4 D) has become convenient analytical method for determination of small molecules that do not possess chromogenic or fluorogenic group. The implementations of CE with C4 D in the determination of inorganic and organic ions and amino acids in biomedical field are demonstrated. Attention on background electrolyte composition, sample treatment procedures, and the utilize of multi-detection systems are described. A number of tables summarizing highly developed CE-C4 D methods and the figures of merit attained are involved. Lastly, concluding remarks and perspectives are argued.


Assuntos
Aminoácidos , Eletroforese Capilar , Eletroforese Capilar/métodos , Condutividade Elétrica , Íons/análise , Aminoácidos/análise
2.
J Chem Phys ; 160(4)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38284656

RESUMO

Lithium bis(fluorosulfonyl)imide (Li-TFSI) is an efficient p-dopant that has been used to enhance the conductivity of perovskite solar cells (PSCs). However, the performance of the corresponding devices is still not satisfactory due to the impact of Li-TFSI on the fill factor and the short-circuit current density of these PSCs. Herein, a new Mn complex [(Mn(Me-tpen)(ClO4)2-)]2+ was introduced as a p-type dopant into spiro-OMeTAD and was successfully applied as a hole transport material (HTM) for PSCs. Analytical studies used for device characterization included scanning electron microscopy, UV-Vis spectroscopy, current-voltage (IV) characteristics, incident photon to current efficiency, power conversion efficiency (PCE), and electrochemical impedance spectroscopy. The UV-Vis spectra displayed oxidation in the HTM by the addition of a dopant. Moreover, the movement of electrons from the higher orbital of the spiro-OMeTAD to the dopant stimulates the generation of the hole carriers in the HTM, enhancing its conductivity with outstanding long-term stability under mild conditions in a humid (RH ∼ 30%) environment. The incorporation of the Mn complex into the composite improved the material's properties and the stability of the fabricated devices. The Mn complex as a p-type dopant for spiro-OMeTAD exhibits a perceptible PCE of 16.39% with an enhanced conductivity of 98.13%. This finding may pave a rational way for developing efficient and stable PSCs in real environments.

3.
Molecules ; 29(11)2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38893410

RESUMO

In aqueous and solid media, 2-HP-ß/γ-CD inclusion complexes with poly aromatic hydrocarbon (PAH) Phenanthrene (PHN), Anthracene (ANT), Benz(a)pyrene (BaP), and Fluoranthene (FLT) were investigated for the first time. The inclusion complexes were characterized and investigated using fluorescence and 1HNMR spectroscopy. The most prevalent complexes consisting of both guests and hosts were those with a 1:1 guest-to-host ratio. The stability constants for the complexes of PHN with 2-HP-ß-CD and 2-HP-γ-CD were 85 ± 12 M-1 and 49 ± 29 M-1, respectively. Moreover, the stability constants were found to be 502 ± 46 M-1 and 289 ± 44 M-1 for the complexes of ANT with both hosts. The stability constants for the complexes of BaP with 2-HP-ß-CD and 2-HP-γ-CD were (1.5 ± 0.02) × 103 M-1 and (9.41 ± 0.03) × 103 M-1, respectively. The stability constant for the complexes of FLT with 2-HP-ß-CD was (1.06 ± 0.06) × 103 M-1. However, FLT was observed to form a weak complex with 2-HP-γ-CD. Molecular dynamic (MD) simulations were used to investigate the mechanism and mode of inclusion processes, and to monitor the atomic-level stability of these complexes. The analysis of MD trajectories demonstrated that all guests formed stable inclusion complexes with both hosts throughout the duration of the simulation time, confirming the experimental findings. However, the flexible Hydroxypropyl arms prevented the PAHs from being encapsulated within the cavity; however, a stable exclusion complex was observed. The main forces that influenced the complexation included van der Waals interactions, hydrophobic forces, and C-H⋯π interaction, which contribute to the stability of these complexes.

4.
Molecules ; 28(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36770803

RESUMO

The inclusion complexes of cucurbit[n]uril, CB[n] (n = 6-8), with poly aromatic hydrocarbon (PAH) Benzo(a)Pyrene (BaP), and fluoranthene (FLT) were investigated carefully in aqueous media. Fluorescence and 1H NMR spectroscopy were used to characterize and investigate the inclusion complexes that were prepared in the aqueous media. The most predominant complexes of both guests with hosts were the 1:1 guest: host complexes. Stability constants of 2322 ± 547 M-1, 7281 ± 689 M-1, 3566 ± 473 M-1 were obtained for the complexes of BaP with CB[6], CB[7], and CB[8], respectively. On the other hand, stability constants of 5900.270 ± 326 M-1, 726.87 ± 78 M-1, 3327.059 ± 153 M-1 were obtained for the complexes of FLT with CB[6], CB[7], and CB[8], respectively. Molecular dynamic (MD) simulations were used to study the mode and mechanism of the inclusion process and to monitor the stability of these complexes in aqueous media at an atomistic level. Analysis of MD trajectories has shown that both BaP and FLT form stable inclusion complexes with CB[7] and CB[8] in aqueous media throughout the simulation time, subsequently corroborating the experimental results. Nevertheless, the small size of CB[6] prohibited the encapsulation of the two PAHs inside the cavity, but stable exclusion complex was observed between them. The main driving forces for the stability of these complexes are the hydrophobic forces, van der Waals interactions, electrostatic effect, the π····π and C-H···π interaction. These results suggest that BaP and FLT can form stable complexes with CB[n] (n = 6-8) in solution.

5.
Molecules ; 28(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36838576

RESUMO

In this study, a carboxylated carbon nanotube-grafted Ag3PO4@AgIO4 (CNT-COO-/Ag3PO4@AgIO4) composite was synthesized through an in situ electrostatic deposition method. The synthesized composite was characterized by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), diffuse reflectance spectroscopy (DRS), and energy-dispersive X-ray spectroscopy (EDS). The electron transfer ability of the synthesized composite was studied using electrochemical impedance spectroscopy (EIS). The CNT-COO-/Ag3PO4@AgIO4 composite exhibited higher activity than CNT/Ag3PO4@AgIO4, Ag3PO4@AgIO4, and bare Ag3PO4. The material characterization and the detailed study of the various parameters thataffect the photocatalytic reaction revealed that the enhanced catalytic activity is related to the good interfacial interaction between CNT-COO and Ag3PO4. The energy band structure analysis is further considered as a reason for multi-electron reaction enhancement. The results and discussion in this study provide important information for the use of the functionalized CNT-COOH in the field of photocatalysis. Moreover, providinga new way to functionalize CNT viadifferent functional groups may lead to further development in the field of photocatalysis. This work could provide a new way to use natural sunlight to facilitate the practical application of photocatalysts toenvironmental issues.


Assuntos
Nanotubos de Carbono , Luz Solar , Espectroscopia de Infravermelho com Transformada de Fourier , Microscopia Eletrônica de Varredura , Espectroscopia Dielétrica
6.
Molecules ; 27(15)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35956767

RESUMO

Vibrational spectroscopic techniques, i.e., attenuated total reflectance infrared (ATR-IR), near infrared spectroscopy (NIRS) and Raman spectroscopy (RS), coupled with Partial Least Squares Regression (PLSR), were evaluated as cost-effective label-free and reagent-free tools to monitor water content in Levulinic Acid/L-Proline (LALP) (2:1, mol/mol) Natural Deep Eutectic Solvent (NADES). ATR-IR delivered the best outcome of Root Mean Squared Error (RMSE) of Cross-Validation (CV) = 0.27% added water concentration, RMSE of Prediction (P) = 0.27% added water concentration and mean % relative error = 2.59%. Two NIRS instruments (benchtop and handheld) were also compared during the study, respectively yielding RMSECV = 0.35% added water concentration, RMSEP = 0.56% added water concentration and mean % relative error = 5.13% added water concentration, and RMECV = 0.36% added water concentration, RMSEP = 0.68% added water concentration and mean % relative error = 6.23%. RS analysis performed in quartz cuvettes enabled accurate water quantification with RMECV = 0.43% added water concentration, RMSEP = 0.67% added water concentration and mean % relative error = 6.75%. While the vibrational spectroscopic techniques studied have shown high performance in relation to reliable determination of water concentration, their accuracy is most likely related to their sensitivity to detect the LALP compounds in the NADES. For instance, whereas ATR-IR spectra display strong features from water, Levulinic Acid and L-Proline that contribute to the PLSR predictive models constructed, NIRS and RS spectra are respectively dominated by either water or LALP compounds, representing partial molecular information and moderate accuracy compared to ATR-IR. However, while ATR-IR instruments are common in chemistry and physics laboratories, making the technique readily transferable to water quantification in NADES, Raman spectroscopy offers promising potential for future development for in situ, sample withdrawal-free analysis for high throughput and online monitoring.


Assuntos
Solventes Eutéticos Profundos , Água , Análise dos Mínimos Quadrados , Prolina , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Espectroscopia de Luz Próxima ao Infravermelho/métodos
7.
Anal Bioanal Chem ; 413(19): 4785-4799, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34061244

RESUMO

Natural deep eutectic solvents (NADES) are ionic solutions, of great interest for extraction from biomass, biocatalysis, and nanoparticle synthesis. They are easily synthesised and eco-friendly, have low volatility and high dissolution power, and are biodegradable. However, water content in NADES is a critical parameter, affecting their optimal use and extraction efficiency. Vibrational spectroscopic techniques are rapid, label-free, non-destructive, non-invasive, and cost-effective analytical tools that can probe the molecular composition of samples. A direct comparison between a previous study using attenuated total reflectance infrared (ATR-IR) spectroscopy for water quantification in NADES and the same investigation performed with Raman spectroscopy is presently reported. Three NADES systems, namely betaine-glycerol (BG), choline chloride-glycerol (CCG), and glucose-glycerol (GG), containing a range of water concentrations between 0% (w/w) and 40% (w/w), have been analysed with Raman spectroscopy coupled to partial least squares regression multivariate analysis. The values of root mean square error of cross-validation (RMSECV) obtained from analysis performed on the pre-processed spectra over the full spectral range (150-3750 cm-1) are respectively 0.2966% (w/w), 0.4703% (w/w), and 0.2351% (w/w) for BG, GG, and CCG. While the direct comparison to previous ATR-IR results shows essentially similar outcomes for BG, the RMSECV is 33.14% lower and 65.84% lower for CG and CCG. Furthermore, mean relative errors obtained with Raman spectroscopy, and calculated from a set of samples used as independent samples, were 1.452% (w/w), 1.175% (w/w), and 1.188% (w/w). Ultimately, Raman spectroscopy delivered performances for quantification of water in NADES with similar accuracy to ATR-IR. The present demonstration clearly highlights the potential of Raman spectroscopy to support the development of new analytical protocols in the field of green chemistry.

8.
Molecules ; 26(18)2021 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-34576961

RESUMO

Raman spectroscopy is a label-free, non-destructive, non-invasive analytical tool that provides insight into the molecular composition of samples with minimum or no sample preparation. The increased availability of commercial portable Raman devices presents a potentially easy and convenient analytical solution for day-to-day analysis in laboratories and production lines. However, their performance for highly specific and sensitive analysis applications has not been extensively evaluated. This study performs a direct comparison of such a commercially available, portable Raman system, with a research grade Raman microscope system for the analysis of water content of Natural Deep Eutectic Solvents (NADES). NADES are renewable, biodegradable and easily tunable "green" solvents, outcompeting existing organic solvents for applications in extraction from biomass, biocatalysis, and nanoparticle synthesis. Water content in NADES is, however, a critical parameter, affecting their properties, optimal use and extraction efficiency. In the present study, portable Raman spectroscopy coupled with Partial Least Squares Regression (PLSR) is investigated for rapid determination of water content in NADES samples in situ, i.e., directly in glassware. Three NADES systems, namely Betaine Glycerol (BG), Choline Chloride Glycerol (CCG) and Glucose Glycerol (GG), containing a range of water concentrations between 0% (w/w) and 28.5% (w/w), were studied. The results are directly compared with previously published studies of the same systems, using a research grade Raman microscope. PLSR results demonstrate the reliability of the analysis, surrendering R2 values above 0.99. Root Mean Square Errors Prediction (RMSEP) of 0.6805%, 0.9859% and 1.2907% w/w were found for respectively unknown CCG, BG and GG samples using the portable device compared to 0.4715%, 0.3437% and 0.7409% w/w previously obtained by analysis in quartz cuvettes with a Raman confocal microscope. Despite the relatively higher values of RMSEP observed, the comparison of the percentage of relative errors in the predicted concentration highlights that, overall, the portable device delivers accuracy below 5%. Ultimately, it has been demonstrated that portable Raman spectroscopy enables accurate quantification of water in NADES directly through glass vials without the requirement for sample withdrawal. Such compact instruments provide solvent and consumable free analysis for rapid analysis directly in laboratories and for non-expert users. Portable Raman is a promising approach for high throughput monitoring of water content in NADES that can support the development of new analytical protocols in the field of green chemistry in research and development laboratories but also in the industry as a routine quality control tool.

9.
Biomed Chromatogr ; 31(9)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28178368

RESUMO

Capacitively coupled contactless conductivity detection (C4 D) has appeared as a powerful technique for the detection of compounds lacking chromogenic or fluorogenic group. Since our last review (Biomedical Chromatography 2014; 28: 1502-1506) several new capillary electrophoresis (CE)-C4 D methods have been reported. This review provides an update of the most recent utilization of CE-C4 D in the field of pharmaceutical, biomedical and food analysis covering the period from February 2014 to October 2016. The use of CE with C4 D in the pharmaceutical field has been shown in many papers. Examples illustrate the applicability of CE-C4 D in the fields of pharmaceutical, biomedical and food analysis. Finally, general conclusions and perspectives are provided.


Assuntos
Eletroforese Capilar/métodos , Biotecnologia , Condutividade Elétrica , Análise de Alimentos , Preparações Farmacêuticas/análise
10.
Biomed Chromatogr ; 29(6): 835-42, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25515940

RESUMO

Triazines are widely used in agriculture around the world as selective pre- and post-emergence herbicides for the control of broad leaf and grassy weeds. With high toxicity and persistence, triazines can contaminate the environment and crops, so the development of rapid and sensitive methods for the determination of different triazines is necessary. Capillary electrophoresis comprises a group of techniques used to separate chemical mixtures. Analytical separation is based on different electrophoretic mobilities. This review focuses on the analysis of triazine herbicides with different modes of capillary electrophoresis, including capillary zone electrophoresis, micellar electrokinetic capillary electrophoresis, capillary electrochromatography and nonaqueous capillary electrophoresis. Determinations of triazines in various matrices such as surface water, groundwater, vegetables, soil and grains are emphasized.


Assuntos
Cromatografia Capilar Eletrocinética Micelar/métodos , Eletroforese Capilar/métodos , Herbicidas , Resíduos de Praguicidas , Poluentes do Solo , Triazinas , Poluentes Químicos da Água , Herbicidas/análise , Herbicidas/química , Herbicidas/isolamento & purificação , Limite de Detecção , Resíduos de Praguicidas/análise , Resíduos de Praguicidas/química , Resíduos de Praguicidas/isolamento & purificação , Reprodutibilidade dos Testes , Poluentes do Solo/análise , Poluentes do Solo/química , Poluentes do Solo/isolamento & purificação , Triazinas/análise , Triazinas/química , Triazinas/isolamento & purificação , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação
11.
Luminescence ; 30(4): 444-50, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25204628

RESUMO

The supramolecular interaction of mesalazine (MSZ) and ß-cyclodextrin (ß-CD) has been examined by ultraviolet-visible (UV-vis) light, infra-red (IR) light and fluorescence spectroscopy. The formation of an inclusion complex has been confirmed based on the changes of the spectral properties. MSZ-ß-CD host-guest complex was formed in (1:1) stoichiometry and the inclusion constant (K = 1.359 × 10(2) L mol(-1) ) was ascertained by typical double reciprocal plots. Furthermore, the thermodynamic parameters (ΔG°, ΔH° and ΔS°) of (MSZ-ß-CD) were obtained. Based on the remarkable enhancement of the fluorescence intensity of MSZ produced through complex formation, a simple, accurate, rapid and highly sensitive spectrofluorometric method for the determination of MSZ in aqueous solution in the presence of ß-CD was developed. The measurement of relative fluorescence intensity was carried with excitation at 330 nm and emission 493 nm. All variables affecting the reactions were studied and optimized. Beer's law was obeyed in the concentration range 0.1-0.45 µg/mL. Absorbance was found to increase linearly with increasing concentration of MSZ, which is corroborated by the calculated correlation coefficient values of 0.99989. The molar absorptivity, Sandell's sensitivity, detection and quantification limits were calculated. The validity of the described methods was assessed, and the method was successfully applied to the determination of MSZ in its pharmaceutical formulation. In addition, a solid inclusion complex was synthesized by co-precipitation method.


Assuntos
Mesalamina/análise , Mesalamina/química , Espectrometria de Fluorescência/métodos , beta-Ciclodextrinas/química , Concentração de Íons de Hidrogênio , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Espectrofotometria Infravermelho , Espectrofotometria Ultravioleta , Temperatura , Termodinâmica
12.
Luminescence ; 30(8): 1250-6, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25808072

RESUMO

The supramolecular interaction of protonated mesalazine (MSZ) and 18-crown-6 ether (18C6) has been examined by Ultraviolet-visible, FT-IR and fluorescence spectroscopy. The formation of the inclusion complex has been confirmed based on the changes of the spectral properties. The MSZ-18C6 host-guest complex formed in (1:1) stoichiometry and the inclusion constant (K = 1.411 × 10(2) L mol(-1)) was ascertained by the typical double reciprocal plots. Furthermore, the thermodynamic parameters (ΔG°, ΔH° and ΔS°) of (MSZ-18C6) were obtained. Based on the remarkable enhancement of the fluorescence intensity of MSZ produced through complex formation, a simple, accurate, rapid and highly sensitive spectrofluorometric method for the determination of MSZ in aqueous solution in the presence of 18C6 was developed. The measurement of relative fluorescence intensity was carried with excitation at 298 nm, emission 410 nm. All variables affecting the reactions were studied and optimized. Beer's law was obeyed in the concentration range of 0.1-0.9 µg/mL. The absorbance was found to increase linearly with increasing concentration of MSZ. The molar absorptivity, Sandell sensitivity, limit of detection (LOD) and limit of quantification (LOQ) were calculated. The validity of the described method was assessed, and the method was successfully applied to the determination of MSZ in its pharmaceutical formulation. In addition, a solid inclusion complex was synthesized by the coprecipitation method.


Assuntos
Éteres de Coroa/química , Mesalamina/química , Preparações Farmacêuticas/química , Cinética , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier
13.
Electrophoresis ; 35(4): 570-6, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24338443

RESUMO

There has been evidence linking elevated polyamines (PAs) and acetylpolamines (AcPAs) level and cancer. So the simultaneous analysis of these compounds has become important task for cancer diagnosis and antitumor drug monitoring. A simple, fast and inexpensive CZE-LIF method has been developed for the determination of cadaverine (CAD), putrescine (PUT), spermine (SPM), spermidine (SPD), acetylspermine (ASPM), and acetylspermidine (ASPD) in human urine using 4-chloro-7-nitro-2,1,3-benzooxadiazole as a fluorescent reagent. Labeling reaction conditions were systematically investigated and were found to be 20 mM borate buffer at pH 7.4, labeling reaction time, and temperature were 10 min and 70°C, respectively. Under these optimized conditions the four PAs, two AcPAs and the internal standard were separated in 6 min. An Exactive-MS with an ESI source was used for identification of the bis-derivative of the ASPM. The method was validated in term of linearity, LODs, repeatability, intra- and interday assays, recovery, and selectivity. The LODs for CAD, PUT, SPM, SPD, ASPM, and ASPD were found to be 7.6, 10.0, 9.0, 8.8,7.8, and 3.3 nM, respectively. The method was successfully applied for the analysis of PAs and AcPAs in healthy human urine samples.


Assuntos
Eletroforese Capilar/métodos , Poliaminas/urina , Biomarcadores Tumorais/química , Biomarcadores Tumorais/urina , Humanos , Concentração de Íons de Hidrogênio , Limite de Detecção , Modelos Lineares , Poliaminas/química , Reprodutibilidade dos Testes , Espectrometria de Fluorescência , Temperatura
14.
J Fluoresc ; 24(2): 355-61, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24057654

RESUMO

The supramolecular interaction of ofloxacin (Oflo) and methyl ß-cyclodextrin (Mß-CD) has been examined by UV-vis, IR and fluorescence spectroscopy. The formation of inclusion complex has been confirmed based on the changes of the spectral properties. The results showed that Mß-CD reacted with Oflo to form an inclusion complex. The Oflo and Mß-CD complex formed a host-guest complex in 1:1 stoichiometry and inclusion constant (K = 7.8 × 10(-3) L mol(-1)) was ascertained by the typical double reciprocal plots. Furthermore, the thermodynamic parameters (∆H°, ∆S° and ∆G°) associated with the inclusion process were also determined. In addition, solid inclusion complex was synthesized. Based on the significant enhancement of the fluorescence intensity of Oflo produced through complex formation, a simple, accurate, rapid and highly sensitive spectrofluorometric method for the determination of Oflo in pharmaceutical formulation was developed. The measurement of relative fluorescence intensity was carried out at 497 nm with excitation at 296 nm. The factors affecting the inclusion complex formation were studied and optimized. Under the optimum reaction conditions, linear relationships with good correlation coefficients (0.9995) were in the concentration range of 50-350 ng/mL for spectrofluorimetry. The limit of detection (LOD) was 11.5 ng/mL. The proposed method was successfully applied to the analysis of Oflo in pharmaceutical preparation.


Assuntos
Ofloxacino/química , Espectrometria de Fluorescência/métodos , beta-Ciclodextrinas/química , Concentração de Íons de Hidrogênio , Padrões de Referência , Termodinâmica
15.
Biomed Chromatogr ; 28(11): 1502-6, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24816678

RESUMO

Capacitively coupled contactless conductivity detection (C4D) has emerged as a powerful technique for the detection of compounds lacking any distinct chromophores or fluorophores. This review provides an update of the most recent application in CE-C4D for pharmaceutical, biomedical and food covering the period from January 2012 to January 2014. The present review is an update of two previous review papers covering the years 2000-2010 (Biomedical Chromatography 2010; 24: 1038-1044 and Biomedical Chromatography 2012; 26: 990-1000). Representative examples illustrate the applicability of CE-C4D in the fields of pharmaceutical, biomedical and food. Finally, general conclusions and perspectives are provided.


Assuntos
Condutividade Elétrica , Eletroforese Capilar
16.
Luminescence ; 29(1): 1-7, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23505221

RESUMO

Cyclodextrins (CDs) are a family of cyclic oligosaccharides composed of α-(1,4)-linked glucopyranose subunits. The most important feature of CDs is their ability to form inclusion complexes (host-guest complexes) with a very wide range of solid, liquid and gaseous compounds by a molecular complexation. During the last decade, a considerable number of research papers has been focused on the use of CDs to enhance fluorescence intensity of different analytes and to develop CD-induced spectrofluorimetric method. In this review, the various spectrofluorimetric methods based on host-inclusion complex are presented.


Assuntos
Ciclodextrinas/química , Espectrometria de Fluorescência/métodos
17.
Luminescence ; 28(4): 490-5, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23345111

RESUMO

A simple, accurate, precise and validated spectrofluorimetric method is proposed for the determination of two cephalosporins, namely, cefadroxile (cefa) and cefuroxime sodium (cefu) in pharmaceutical formulations. The method is based on a reaction between cephalosporins with 1,2-naphthoquinone-4-sulfonate in alkaline medium, to form fluorescent derivatives that are extracted with chloroform and subsequently measured at 610 and 605 nm after excitation at 470 and 460 nm for cefa and cefu respectively. The optimum experimental conditions have been studied. Beer's law is obeyed over the concentrations of 20-70 ng/mL and 15-40 ng/mL for cefa and cefu, respectively. The detection limits were 4.46 ng/mL and 3.02 ng/mL with a linear regression correlation coefficient of 0.9984 and 0.998, and recoveries ranging 97.50-109.96% and 95.73-98.89% for cefa and cefu, respectively. The effects of pH, temperature, reaction time, 1,2-naphthoquinone-4-sulfonic concentration and extraction solvent on the determination of cefa and cefu, have been examined. The proposed method can be applied for the determination of cefa and cefu in pharmaceutical formulations in quality control laboratories.


Assuntos
Cefalosporinas/análise , Preparações Farmacêuticas/química , Concentração de Íons de Hidrogênio , Estrutura Molecular , Espectrometria de Fluorescência , Temperatura , Fatores de Tempo
18.
Luminescence ; 28(5): 734-41, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22991324

RESUMO

A simple, accurate, precise spectrofluorimetric method has been proposed for the determination of three cephalosporins, namely, cefixime (cefi), cephalexine (ceph), and cefotaxime sodium (cefo) in pharmaceutical formulations. This method is based on a reaction between cephalosporins with 8-hydroxy-1,3,6-pyrenetrisulfonic acid trisodium salt (HPTS) in alkaline medium, at pH 12.0 for cefi and 13.0 for ceph and cefo to give highly fluorescent derivatives extracted with chloroform and subsequent measurements of the formed fluorescent products at 520, 500 and 510 nm after excitation at 480, 470 and 480 nm for cefi, ceph and cefo respectively. The optimum experimental conditions have been studied. Beer's law is obeyed over concentrations of 10-60 ng/mL, 5-35 ng/mL and 10-60 ng/mL for cefi, ceph and cefo, respectively. The detection limits were 4.20 ng/mL, 2.54 ng/mL and 4.09 ng/mL for cefi, ceph and cefo, respectively, with a linear regression correlation coefficient of 0.99783, 0.99705 and 0.9978 and recoveries in ranges 96.96-105.77, 96.13-102.55 and 95.45-105.39% for cefi, ceph and cefo, respectively. This method is simple and can be applied for the determination of cefi, ceph and cefo in pharmaceutical formulations in quality control laboratories.


Assuntos
Cefalosporinas/análise , Preparações Farmacêuticas/química , Espectrometria de Fluorescência/métodos , Estrutura Molecular
19.
Acta Chim Slov ; 60(1): 159-65, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23841346

RESUMO

Two rapid, simple and sensitive spectrophotometric methods for the quantitative analysis of moxifloxacin (MOX) in pharmaceutical formulations have been described. The first method (A) involves reaction of MOX with 1,2-naphthoquinone-4-sulphonate (NQS) in alkaline medium (pH 11.0) which results in an orange-coloured product exhibiting maximum absorption (lambda(max)) at 411 nm. The second method (B) is based on the oxidation of the MOX with a known excess of cerium (IV) sulfate and the residual oxidant is determined by treating with a fixed amount of methyl orange, and measuring the absorbance at 507 nm. The molar absorptivities for methods A and B were 4.9 x 10(3) and 6.5 x 10(4) L mol(-1) cm(-1), respectively. Under the optimized reaction conditions, Beer's law correlation of the absorbance with MOX concentration was obtained in the range of 2.5-20 and 0.5-30 microgmL(-1) for method A and B respectively. The intra-day precision expressed as relative standard deviation (RSD) was < 1.6% for both methods. The methods were validated in terms of accuracy and precision and were successfully applied to the determination of MOX in its pharmaceutical dosage form. The proposed methods are useful for routine analysis of MOX in quality control laboratories.


Assuntos
Compostos Aza/análise , Química Farmacêutica , Quinolinas/análise , Espectrofotometria Ultravioleta/métodos , Fluoroquinolonas , Concentração de Íons de Hidrogênio , Estrutura Molecular , Moxifloxacina , Naftoquinonas/química
20.
Pharmaceutics ; 15(6)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37376021

RESUMO

Raman spectroscopy is a well-established technique for the molecular characterisation of samples and does not require extensive pre-analytical processing for complex cosmetic products. As an illustration of its potential, this study investigates the quantitative performance of Raman spectroscopy coupled with partial least squares regression (PLSR) for the analysis of Alginate nanoencapsulated Piperonyl Esters (ANC-PE) incorporated into a hydrogel. A total of 96 ANC-PE samples covering a 0.4% w/w-8.3% w/w PE concentration range have been prepared and analysed. Despite the complex formulation of the sample, the spectral features of the PE can be detected and used to quantify the concentrations. Using a leave-K-out cross-validation approach, samples were divided into a training set (n = 64) and a test set, samples that were previously unknown to the PLSR model (n = 32). The root mean square error of cross-validation (RMSECV) and prediction (RMSEP) was evaluated to be 0.142% (w/w PE) and 0.148% (w/w PE), respectively. The accuracy of the prediction model was further evaluated by the percent relative error calculated from the predicted concentration compared to the true value, yielding values of 3.58% for the training set and 3.67% for the test set. The outcome of the analysis demonstrated the analytical power of Raman to obtain label-free, non-destructive quantification of the active cosmetic ingredient, presently PE, in complex formulations, holding promise for future analytical quality control (AQC) applications in the cosmetics industry with rapid and consumable-free analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA