RESUMO
Nature frequently provides narrative biological motivation. This study reports on oxygen-induced auto-polymerization of dopamine on the surface of medical cotton fibers to develop super-hydrophobic surfaces. The versatile reactivity of polydopamine (PDA) surfactant was adopted to deposit silver nanoparticles (Ag NPs) on the surface of medical cotton. SEM micrographs demonstrated the uniform deposition of Ag NPs. The antimicrobial reactivity confirmed the potential of Ag-loaded PDA-cotton fiber to hinder the growth of some tested pathogenic microbes. Silver-loaded PDA-cotton fibers showed the most promising zone of inhibition (ZOI) against (33.5 mm), Candida tropicalis (30.2 mm), and Aspergillus niger (30.2 mm). In growth curve assay, after addition of silver-loaded PDA-cotton fibers, the O.D. were lower (0.365 nm), showing the repression impact on S. aureus. It was observed that the quantity of cellular protein discharged from S. aureus is directly proportional to the concentration of silver-loaded PDA-cotton fibers and found to be 159.68 µg/ml after the treatment with silver-loaded PDA-cotton fibers (2 cm × 2 cm), which proves the antibacterial characteristics of the synthesied silver-loaded PDA-cotton fibers. The obtained antimicrobial results gives solution in treating pathogenic microbes and the application of silver-loaded PDA-cotton fibers as wound dressing in biomedical and pharmaceutical fields.
Assuntos
Anti-Infecciosos , Bivalves , Nanopartículas Metálicas , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Indóis , Nanopartículas Metálicas/química , Polímeros , Prata/química , Prata/farmacologia , Staphylococcus aureusRESUMO
Expression of concern for 'Promising antimicrobial and antibiofilm activities of reduced graphene oxide-metal oxide (RGO-NiO, RGO-AgO, and RGO-ZnO) nanocomposites' by Sherif Elbasuney et al., RSC Adv., 2021, 11, 25961-25975, https://doi.org/10.1039/D1RA04542C.
RESUMO
Water pollution and antimicrobial resistance (AMR) have become two global threats; 80% of diseases and 50% of child deaths are due to poor water quality. In this study, hydrothermal processing was employed to manufacture manganese oxide nanorods. Silver dopant was deposited on the surface of manganese oxide. XRD diffractogram confirmed the facile synthesis of Ag/Mn2O3 nanocomposite. XPS survey analysis demonstrated silver content of 9.43 atom %. Photocatalytic measurements demonstrated the outstanding efficiency of the Ag-Mn2O3 compared to virgin oxide particles under visible radiation. Degradation efficiencies Mn2O3 and Ag/Mn2O3 on methyl orange (MO) dye was found to be 53% and 85% under visible spectrum. Silver dopant was found to decrease the binding energy of valence electrons; this action could support electron-hole pair generation under visible spectrum and could promote catalytic performance. Ag/Mn2O3 NPs demonstrated most effective performance (95% removal efficiency) at pH 3; this could be ascribed to the electrostatic attraction between positively charged catalyst and the negatively charged MO. Ag/Mn2O3 demonstrated enhanced antibacterial activity against Gram-positive Staphylococcus aureus (S. aureus) (19 mm ZOI), and Gram-negative Escherichia coli (E. coli) (22 mm ZOI) respectively; the developed nanocomposite demonstrated advanced anti-film activity with inhibition percentage of 95.5% against E. coli followed by 89.5% against S. aureus.
Assuntos
Escherichia coli , Compostos de Manganês , Nanocompostos , Óxidos , Prata , Staphylococcus aureus , Compostos de Manganês/química , Compostos de Manganês/farmacologia , Óxidos/química , Óxidos/farmacologia , Prata/química , Prata/farmacologia , Nanocompostos/química , Catálise , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Luz , Compostos Azo/química , Compostos Azo/farmacologia , Testes de Sensibilidade Microbiana , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/síntese química , Processos FotoquímicosRESUMO
Dental caries (DC) is a chronic illness that affects 2 billion individuals worldwide, with 520 million of those suffering from it in their primary teeth. It is apparent that early DC detection and subsequent minimally invasive therapy are crucial clinical requirements. The first reversible clinical indication of demineralization is dental white spot (DWS) lesions. However, diagnosing DWS poses extreme challenges for practitioners. In this investigation, a customized laser-induced fluorescence system with a hyperspectral imaging (HI) camera and a non-ionization laser light supply was created for DWS localization and early DC detection. A UV laser diode source with a wavelength of 395 nm was used for light stimulation for the 10 test samples of teeth. The emitted signature of the main tooth components, including dentin, DWS, enamel, and DC, was recorded. An attempt was made to increase the system's sensitivity to the fluorescent signal by applying a logarithmic scale to the spectral signature. Moreover, further discrimination may be achieved by signal strength. We identified that the fluorescent signal's peak intensity at 771 nm works best for discriminating DWS from normal areas, or DC. For characterizing dentin, the re-emitted frequency at 500 nm has the maximum intensity. Next, we presented our imaging grouping strategy that combines visual enhancement through a moving average, MA, filtering and segmenting an image using K-means clustering (K-mc) (K = 8) for instant and precise DWS grouping for the constructed HI images at (500 nm and 771 nm). Despite the tiny structure and its DWS white appearance, our approach could successfully demarcate the DWS on the tested teeth. Dental examiners might benefit from our simple, non-invasive, non-ionizing optical diagnosis approach to help them make their first assessments and experience accurate and exact delineation of the DWS to obtain immediate and higher rates of early-stage DC detection.
Assuntos
Cárie Dentária , Imageamento Hiperespectral , Humanos , Fluorescência , Cárie Dentária/diagnóstico por imagem , Lasers Semicondutores , AlgoritmosRESUMO
Hydroxyapatite (HA), the most common bioceramic material, offers attractive properties as a catalyst support. Highly crystalline mono-dispersed silver doped hydroxyapatite (Ag-HA) nanorods of 60 nm length was developed via hydrothermal processing. Silver dopant offered enhanced chemisorption for crystal violet (CV) contaminant. Silver was found to intensify negative charge on the catalyst surface; in this regard enhanced chemisorption of positively charged contaminants was accomplished. Silver dopant experienced decrease in the binding energy of valence electron for oxygen, calcium, and phosphorous using X-ray photoelectron spectroscopy XPS/ESCA; this finding could promote electron-hole generation and light absorption. Removal efficiency of Ag-HA nanocomposite for CV reached 88% after the synergistic effect with 1.0 mM H2O2; silver dopant could initiate H2O2 cleavage and intensify the release of active ȮH radicals. Whereas HA suffers from lack of microbial resistance; Ag-HA nanocomposite demonstrated high activity against Gram-positive (S. aureus) bacteria with zone of inhibition (ZOI) mm value of 18.0 mm, and high biofilm inhibition of 91.1%. Ag-HA nanocompsite experienced distinctive characerisitcs for utilization as green bioceramic photocatalyst for wastewater treatment.
Assuntos
Peróxido de Hidrogênio , Purificação da Água , Prata/farmacologia , Staphylococcus aureus , Antibacterianos/farmacologia , Durapatita , Violeta GencianaRESUMO
Carious is a global chronic disease; 2 billion people and 520 million children suffer from permanent and primary teeth caries respectively. Early caries detection via precise, non-invasive, non-ionizing radiation is highly appreciated. Carious deteriorate the chemical structure of sound tooth tissues, with variation in its optical properties. In this study, customized laser-induced fluorescence system consists of non-ionizing laser light source and hyperspectral camera was developed for early caries detection. Tested tooth sample was illuminated with laser source of 385 nm and 5 mW power. The emitted spectrum signature for main tooth elements including enamel, dentin, stain, and caries were captured. Logarithmic scale of spectrum signature was applied in an attempt to enhance system sensitivity to fluorescent signal. Fluorescence signature at 500 nm secured the maximum fluorescence intensity difference for different tooth elements. Consequently 2D hyperspectral image at 500 nm was constructed. Enhanced 2D image was accomplished via nonlinear filter to enhance contrast. Segmentation via K mean clustering was adopted for precise caries delineation. This narrative, facile, non-invasive, non-ionizing technique experienced precise and accurate delineation of different caries stages (normal, moderate, and severe).
Assuntos
Cárie Dentária , Fotoquimioterapia , Desmineralização do Dente , Dente , Criança , Humanos , Imageamento Hiperespectral , Fotoquimioterapia/métodos , Lasers , Desmineralização do Dente/diagnóstico , Fluorescência , Cárie Dentária/diagnóstico por imagem , DentinaRESUMO
Global food crisis due to climate change, pandemic COVID-19 outbreak, and Russia-Ukraine conflict leads to catastrophic consequences; almost 10 percent of the world's population go to bed hungry daily. Narrative solution for green agriculture with high vegetation and crop yield is mandatory; novel nanomaterials can improve plant immunity and restrain plant diseases. Iron is fundamental nutrient element; it plays vital role in enzyme activity and RNA synthesis; furthermore it is involved in photosynthesis electron-transfer chains. This study reports on the facile synthesis of colloidal ferric oxide nanoparticles as novel nano-fertilizer to promote vegetation and to suppress Fusarium wilt disease in tomato plant. Disease index, protection percent, photosynthetic pigments, and metabolic indicators of resistance in plant as response to induction of systemic resistance (SR) were recorded. Results illustrated that Fe2O3 NPs had antifungal activity against F. oxysporum. Fe2O3 NPs (at 20 µg/mL) was the best treatment and reduced percent disease indexes by 15.62 and gave highly protection against disease by 82.15% relative to untreated infected plants. Fe2O3 NPs treatments in either (non-infected or infected) plants showed improvements in photosynthetic pigments, osmolytes, and antioxidant enzymes activity. The beneficial effects of the synthesized Fe2O3 NPs were extended to increase not only photosynthetic pigments, osmolytes contents but also the activities of peroxidase (POD), polyphenol oxidase (PPO), catalase (CAT) and superoxide dismutase (SOD), enzymes of the healthy and infected tomato plants in comparison with control. For, peroxidase and polyphenol oxidase activities it was found that, application of Fe2O3 NPs (10 µg/mL) on challenged plants offered the best treatments which increased the activities of POD by (34.4%) and PPO by (31.24%). On the other hand, application of Fe2O3 NPs (20 µg/mL) on challenged plants offered the best treatments which increased the activities of CAT by (30.9%), and SOD by (31.33%). Supplementary Information: The online version contains supplementary material available at 10.1007/s10904-022-02442-6.
RESUMO
Oxygen saturation level plays a vital role in screening, diagnosis, and therapeutic assessment of disease's assortment. There is an urgent need to design and implement early detection devices and applications for the COVID-19 pandemic; this study reports on the development of customized, highly sensitive, non-invasive, non-contact diffused reflectance system coupled with hyperspectral imaging for mapping subcutaneous blood circulation depending on its oxygen saturation level. The forearm of 15 healthy adult male volunteers with age range of (20-38 years) were illuminated via a polychromatic light source of a spectrum range 400-980 nm. Each patient had been scanned five times to calculate the mean spectroscopic reflectance images using hyperspectral camera. The customized signal processing algorithm includes normalization and moving average filter for noise removal. Afterward, employing K-means clustering for image segmentation to assess the accuracy of blood oxygen saturation (SpO2) levels. The reliability of the developed diffused reflectance system was verified with the ground truth technique, a standard pulse oximeter. Non-invasive, non-contact diffused reflectance spectrum demonstrated maximum signal variation at 610 nm according to SpO2 level. Statistical analysis (mean, standard deviation) of diffused reflectance hyperspectral images at 610 nm offered precise calibrated measurements to the standard pulse oximeter. Diffused reflectance associated with hyperspectral imaging is a prospective technique to assist with phlebotomy and vascular approach. Additionally, it could permit future surgical or pharmacological intercessions that titrate or limit ischemic injury continuously. Furthermore, this technique could offer a fast reliable indication of SpO2 levels for COVID-19 diagnosis.
RESUMO
Microbial infections are considered one of the most dangerous infections in humans due to their resistance to most antimicrobial agents. In this study, nanocomposites based on reduced graphene oxide (RGO) and metal oxides (NiO, AgO, and ZnO) were fabricated. The graphite precursor and RGO were characterized by XRD, Raman spectroscopy, SEM, and HRTEM, while SEM, XRD, and EDX mapping analysis validated the synthesized nanocomposites. In addition, ZOI and MIC were employed to test the antimicrobial potential, while their antibiofilm activity and the effect of UV illumination were also investigated. Finally, reaction mechanism determination was performed using SEM analysis. The results revealed that all the synthesized nanocomposites (RGO-NiO, RGO-AgO, and RGO-ZnO) had outstanding antimicrobial activity against Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa), Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis), unicellular fungi (Candida albicans and Cryptococcus neoformans) and multicellular fungi (Aspergillus niger, A. terreus, A. flavus and A. fumigatus). Moreover, the synthesized RGO-NiO nanocomposite exhibited antibiofilm activity (following 10.0 µg mL-1 RGO-NiO), with an inhibition percentage of 94.60% for B. subtilis, 91.74% for P. aeruginosa, and 98.03% for C. neoformans. The maximum percentage inhibition under UV illumination toward P. aeruginosa, B. subtilis and C. neoformans at the end of the experiment using RGO-NiO were 83.21%, 88.54%, and 91.15%, respectively, while the values of RGO-AgO were 64.85%, 68.0%, and 80.15%, respectively, and those of RGO-ZnO were 72.95%, 82.15%, and 79.25%, respectively. The SEM analysis of C. neoformans in the absence of the RGO-NiO nanocomposite showed the development of unicellular fungal cells by regular budding. In contrast, after RGO-NiO treatment, noticeable morphological differences were identified in C. neoformans, including the lysis of the outer surface with deformations of the fungal cells. In conclusion, the prepared nanocomposites are promising antimicrobial and antibiofilm agents and can be used to treat the pathogenic microbes at low concentrations and represent a new strategy for managing infectious diseases caused by pathogenic microorganisms.
RESUMO
Hidden or buried explosives are the most common scenario by terrorist attacks; therefore explosive vapour detection is a vital demand. Explosives are electron deficient materials; the vicinity of explosives to fluorescent material can encounter electron migration. This study reports on facile synthesis of cerium (III)-melamine coordination polymer (CeM-CP) with exclusive optical properties. CeM-CP demonstrated novel spectral fluorescence properties over visible and infrared bands when stimulated with UVA LED source at 385 nm of 100 mW power. Stimulated CeM-CP demonstrated unique spectral fluorescence signal at 400, 700, and 785 nm. These fluorescent signals were correlated to cerium coordination with four nitrogen atoms; vacant orbital will be available for electron excitation migration. Spectral fluorescent signals were quenched as CeM-CP was subjected to TNT vapours. Hyperspectral imaging offered 3D plot of fluorescence signature. The main outcome is that complete fluorescence signal attenuation was achieved at 785 nm. CeM-CP could act as as a novel sensing element for explosive vapour detection.
RESUMO
Different cancers are caused by accumulation of numerous genetic and epigenetic changes. Recently, nonlinear polarization has been considered as a marvelous tool for several medical applications. The capability of nonlinear polarization, to monitor any changes in RNA's spectral signature due to breast cancer (BC) was evaluated. Blood samples, from healthy controls and BC patients, were collected for whole blood preparation for genomic total RNA purification. Total RNA samples were stimulated with a light-emitting diode (LED) source of 565 nm; the resonance frequency of investigated RNA samples was captured and processed via hyperspectral imaging. Resonance frequency signatures were processed using fast Fourier transform in an attempt to differentiate between RNA (control) and RNA (BC) via frequency response. RNA (BC) demonstrated a characteristic signal at 0.02 GHz, as well as a phase shift at 0.031, and 0.070 GHZ from RNA (control). These features could offer early BC diagnosis. This is the first time to describe an optical methodology based on nonlinear polarization as a facile principle to distinguish and identify RNA alterations in BC by their characteristic fingerprint spectral signature.
RESUMO
OBJECTIVE: There is a must for non-invasive caries detection method to supplement traditional visual assessment by the clinician before lesion progression reaches a stage requiring invasive therapy. MATERIAL AND METHODS: In this paper, the nature of tissue response to light interaction has been used for early diagnosis, using laser induced fluorescence spectroscopy. Human tooth sample was illuminated with He-Ne laser sources (633 nm) with energy 5 mW. The reflected and emitted spectra of investigated samples were collected using hyperspectral camera to develop multispectral images. The variation of reflected and emitted energy as function in wavelength was employed to generate characteristic spectrum of each tooth tissue. Human teeth caries lesion releases their excess energy by emitting fluorescence light producing chemical footprint signature for each tooth elements and caries state. RESULTS: This non-invasive, non-contact, and non-ionizing hyperspectral imaging system was employed to diagnose and classify different caries types and stages. Reconstructed 3D fluorescence images offered discrimination between enamel and dentin caries at 633 nm illumination spectral line; white spot lesion was clearly detected and recognized at far visible and infrared wavelength ranges. CONCLUSION: This study reports on customized optical imaging system that can offer high sensitivity, high resolution. Optimum stimulating wavelength for early caries detection was reported to be 633 nm. This novel approach can offer a full map of caries degree status.
Assuntos
Algoritmos , Cárie Dentária , Cárie Dentária/diagnóstico por imagem , Diagnóstico Precoce , Fluorescência , Humanos , Lasers , Imagem Óptica , Espectrometria de FluorescênciaRESUMO
Terrorism by means of explosives has become a crucial threat. Nanoparticles with distinctive properties can offer novel aspects for instant detection of explosive materials. Common explosives are organic compounds that contain nitro group (NO2) along with carbon and hydrogen elements. This study demonstrates complete identification of nitramine explosives (RDX & HMX) using colloidal silica nanoparticles. Sustainable fabrication of colloidal silica was conducted via hydrothermal processing technique. Explosive identification involves a digestion of the tested material using strong acid. The digestion process results in the development of nitro group and corresponding formaldehyde segment. The identification of the nitro group was performed using colloidal silica nanoparticles functionalized with secondary amine to develop a characteristic dark blue colour. Simultaneous identification of formaldehyde segment was performed using colloidal silica functionalized with aromatic phenol to develop a red colour. This robust explosive detection technology can find wide applications on site where instant identification to assess potential threat is a crucial demand. Thanks to hydrothermal processing, sustainable fabrication and surface modification of colloidal silica particles can be obtained.
RESUMO
Energy-rich bonds such as nitrates (NO3-) and percholorates (ClO4-) have an explosive nature; they are frequently encountered in high energy materials. These bonds encompass two highly electronegative atoms competing for electrons. Common explosive materials including urea nitrate, ammonium nitrate, and ammonium percholorates were subjected to photoacoustic spectroscopy. The captured signal was processed using novel digital algorithm designed for time and frequency domain analysis. Frequency domain analysis offered not only characteristic frequencies for NO3- and ClO4- groups; but also characteristic fingerprint spectra (based on thermal, acoustical, and optical properties) for different materials. The main outcome of this study is that phase-shift domain analysis offered an outstanding signature for each explosive material, with novel discrimination between explosive and similar non-explosive material. Photoacoustic spectroscopy offered different characteristic signatures that can be employed for real time detection with stand-off capabilities. There is no two materials could have the same optical, thermal, and acoustical properties.
RESUMO
Early detection of carious is vital for demineralization reversal, offering less pain, as well as precise carious removal. In this study, the difference in optical properties of normal tissue and human carious lesion has been used for early diagnosis, using laser induced fluorescence spectroscopy. The optical system consists of light source in visible band and hyperspectral camera, associated with designed digital image processing algorithm. The human tooth sample was illuminated with visible band sources at 488, and 514 nm with energy of 5 m watt. The reflected and emitted light from the tested sample was captured using hyperspectral camera in an attempt to generate multispectral images (cubic image). The variation of reflected and emitted energy as function of wavelength was employed to generate characteristic spectrum of each tooth tissue. Human teeth carious tissue lesion releases its excess energy by emitting fluorescence light producing chemical footprint signature; this signature is dependent on the elemental composition of tooth elements and carious state. This non-invasive, non-contact and non-ionizing imaging system with associated novel pattern recognition algorithm was employed to diagnose and classify different carious types and stages. It was reported that the perceived fluorescence emission is function of the illuminating wavelength. While enamel and dentin carious were distinguished and characterized at 514 nm illuminating wavelength; white spot lesion were contoured and recognized at 488 nm. Therefore, full recognition could be achieved through generated cubic image after sample irradiation at 488 nm and 514 nm. In conclusion, this study reports on a customized optical image system that can offer high sensitivity, high resolution, and early carious detection with optimum performance at 514 nm and 488 nm.
Assuntos
Cárie Dentária/diagnóstico , Lasers , Reconhecimento Automatizado de Padrão/métodos , Algoritmos , Cárie Dentária/diagnóstico por imagem , Esmalte Dentário/diagnóstico por imagem , Diagnóstico Precoce , Humanos , Espectrometria de FluorescênciaRESUMO
Laser photoacoustic spectroscopy (LPAS) is an attractive technology in terms of simplicity, ruggedness, and overall sensitivity; it detects the time dependent heat generated (thermo-elastic effect) in the target via interaction with pulsed optical radiation. This study reports on novel LPAS technique that offers instant and standoff detection capabilities of trace explosives. Over the current study, light is generated using pulsed Q-switched Nd:YAG laser; the generated photoacoustic response in stimulated explosive material offers signature values that depend on the optical, thermal, and acoustical properties. The generated acoustic waves were captured using piezoelectric transducer as well as novel customized optical sensor with remotely laser interferometer probe. A digital signal processing algorithm was employed to identify explosive material signatures via calculation of characteristic optical properties (absorption coefficient), sound velocity, and frequency response of the generated photoacoustic signal. Customized LPAS technique was employed for instantaneous trace detection of three main different high explosive materials including TNT, RDX, and HMX. The main outcome of this study is that the novel customized optical sensor signals were validated with traditional piezoelectric transducer. Furthermore, the customized optical sensor offered standoff detection capabilities (10cm), fast response, high sensitivity, and enhanced signal to noise ratio. This manuscript shaded the light on the instant detection of trace explosive materials from significant standoffs using novel customized LPAS technique.
RESUMO
The instant detection of explosives and explosive-related compounds has become an urgent priority in recent years for homeland security and counter-terrorism applications. Modern techniques should offer enhancement in selectivity, sensitivity, and standoff distances. Miniaturisation, portability, and field-ruggedisation are crucial requirements. This study reports on instant and standoff identification of concealed explosive-related compounds using customized Raman technique. Stokes Raman spectra of common explosive-related compounds were generated and spectrally resolved to create characteristic finger print spectra. The scattered Raman emissions over the band 400:2000cm-1 were compared to infrared absorption using FTIR. It has been demonstrated that the two vibrational spectroscopic techniques were opposite and completing each other. Molecular vibrations with strong absorption in infrared (those involve strong change in dipole moments) induced weak signals in Raman and vice versa. The tailored Raman offered instant detection, high sensitivity, and standoff detection capabilities. Raman demonstrated characteristic fingerprint spectra with stable baseline and sharp intense peaks. Complete correlations of absorption/scattered signals to certain molecular vibrations were conducted to generate an entire spectroscopic profile of explosive-related compounds. This manuscript shades the light on Raman as one of the prevailing technologies for instantaneous detection of explosive-related compounds.
RESUMO
Advanced thermobaric explosives have become one of the urgent requirements when targeting caves, fortified structures, and bunkers. Highly metal-based systems are designed to exploit the secondary combustion resulted from active metal particles; thus sustained overpressure and additional thermal loadings can be achieved. This study, reports on a novel approach for chemical composition optimization using thermochemical calculations in an attempt to achieve the highest explosion power. Shock wave resulted from thermobaric explosives (TBX) was simulated using ANSYS(®) AUTODYN(®) 2D hydrocode. Nanoscopic fuel-rich thermobaric charge was prepared by pressing technique; static field test was conducted. Comparative studies of modeled pressure-time histories to practical measurements were conducted. Good agreement between numerical modeling and experimental measurements was observed, particularly in terms of the prediction of wider overpressure profile which is the main characteristics of TBX. The TBX wider overpressure profile was ascribed to the secondary shock wave resulted from fuel combustion. The shock wave duration time and its decay pattern were acceptably predicted. Effective lethal fire-ball duration up to 50ms was achieved and evaluated using image analysis technique. The extended fire-ball duration was correlated to the additional thermal loading due to active metal fuel combustion. The tailored thermobaric charge exhibited an increase in the total impulse by 40-45% compared with reference charge.