Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant J ; 118(1): 203-224, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38124335

RESUMO

The importance of RNA-binding proteins (RBPs) for plant responses to environmental stimuli and development is well documented. Insights into the portfolio of RNAs they recognize, however, clearly lack behind the understanding gathered in non-plant model organisms. Here, we characterize binding of the circadian clock-regulated Arabidopsis thaliana GLYCINE-RICH RNA-BINDING PROTEIN 7 (AtGRP7) to its target transcripts. We identified novel RNA targets from individual-nucleotide resolution UV crosslinking and immunoprecipitation (iCLIP) data using an improved bioinformatics pipeline that will be broadly applicable to plant RBP iCLIP data. 2705 transcripts with binding sites were identified in plants expressing AtGRP7-GFP that were not recovered in plants expressing an RNA-binding dead variant or GFP alone. A conserved RNA motif enriched in uridine residues was identified at the AtGRP7 binding sites. NMR titrations confirmed the preference of AtGRP7 for RNAs with a central U-rich motif. Among the bound RNAs, circadian clock-regulated transcripts were overrepresented. Peak abundance of the LHCB1.1 transcript encoding a chlorophyll-binding protein was reduced in plants overexpressing AtGRP7 whereas it was elevated in atgrp7 mutants, indicating that LHCB1.1 was regulated by AtGRP7 in a dose-dependent manner. In plants overexpressing AtGRP7, the LHCB1.1 half-life was shorter compared to wild-type plants whereas in atgrp7 mutant plants, the half-life was significantly longer. Thus, AtGRP7 modulates circadian oscillations of its in vivo binding target LHCB1.1 by affecting RNA stability.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Glicina/metabolismo , RNA/metabolismo , Estabilidade de RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
2.
Plant Cell Physiol ; 60(9): 2040-2050, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31241165

RESUMO

The timing of floral initiation is a tightly controlled process in plants. The circadian clock regulated glycine-rich RNA-binding protein (RBP) AtGRP7, a known regulator of splicing, was previously shown to regulate flowering time mainly by affecting the MADS-box repressor FLOWERING LOCUS C (FLC). Loss of AtGRP7 leads to elevated FLC expression and late flowering in the atgrp7-1 mutant. Here, we analyze genetic interactions of AtGRP7 with key regulators of the autonomous and the thermosensory pathway of floral induction. RNA interference- mediated reduction of the level of the paralogous AtGRP8 in atgrp7-1 further delays floral transition compared of with atgrp7-1. AtGRP7 acts in parallel to FCA, FPA and FLK in the branch of the autonomous pathway (AP) comprised of RBPs. It acts in the same branch as FLOWERING LOCUS D, and AtGRP7 loss-of-function mutants show elevated levels of dimethylated lysine 4 of histone H3, a mark for active transcription. In addition to its role in the AP, AtGRP7 acts in the thermosensory pathway of flowering time control by regulating alternative splicing of the floral repressor FLOWERING LOCUS M (FLM). Overexpression of AtGRP7 selectively favors the formation of the repressive isoform FLM-ß. Our results suggest that the RBPs AtGRP7 and AtGRP8 influence MADS-Box transcription factors in at least two different pathways of flowering time control. This highlights the importance of RBPs to fine-tune the integration of varying cues into flowering time control and further strengthens the view that the different pathways, although genetically separable, constitute a tightly interwoven network to ensure plant reproductive success under changing environmental conditions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Relógios Circadianos/genética , Proteínas de Ligação a RNA/metabolismo , Processamento Alternativo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Flores/genética , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Histonas/metabolismo , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Mutação , Isoformas de Proteínas , Proteínas de Ligação a RNA/genética , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA