Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Hum Mol Genet ; 28(8): 1286-1297, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30561639

RESUMO

Molecular mechanisms governing the development of the human cochlea remain largely unknown. Through genome sequencing, we identified a homozygous FOXF2 variant c.325A>T (p.I109F) in a child with profound sensorineural hearing loss (SNHL) associated with incomplete partition type I anomaly of the cochlea. This variant is not found in public databases or in over 1000 ethnicity-matched control individuals. I109 is a highly conserved residue in the forkhead box (Fox) domain of FOXF2, a member of the Fox protein family of transcription factors that regulate the expression of genes involved in embryogenic development as well as adult life. Our in vitro studies show that the half-life of mutant FOXF2 is reduced compared to that of wild type. Foxf2 is expressed in the cochlea of developing and adult mice. The mouse knockout of Foxf2 shows shortened and malformed cochleae, in addition to altered shape of hair cells with innervation and planar cell polarity defects. Expressions of Eya1 and Pax3, genes essential for cochlear development, are reduced in the cochleae of Foxf2 knockout mice. We conclude that FOXF2 plays a major role in cochlear development and its dysfunction leads to SNHL and developmental anomalies of the cochlea in humans and mice.


Assuntos
Cóclea/embriologia , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/fisiologia , Adulto , Animais , Criança , Cóclea/metabolismo , Cóclea/fisiologia , Desenvolvimento Embrionário , Feminino , Células Ciliadas Auditivas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , Organogênese , Fator de Transcrição PAX3/genética , Fator de Transcrição PAX3/fisiologia , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/fisiologia , Transdução de Sinais/genética , Sequenciamento Completo do Genoma
2.
Clin Biochem ; 115: 49-66, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36067872

RESUMO

The Abbott i-STAT and Siemens Healthineers epoc are commonly used in the provision of care during emergency medical services calls and other settings. Maintaining these systems within manufacturer's temperature claims in these settings poses challenges across the world. This review summarizes solutions that have been reported in the peer-reviewed literature and proposes additional strategies to further address these challenges. A literature search was performed with Clarivate's Web of Science from inception to August 3, 2022. Search terms included i-STAT, epoc, temperature, cold, hot, heat, freeze, frozen, prehospital, disaster, POCT, point of care, blood gas, helicopter, airplane, and ambulance. One author also reviewed manually every issue of the Journal of Paramedic Practice. The search identified 17 solutions for addressing temperature-related challenges with the i-STAT device, nine solutions for i-STAT cartridges, one solution for the epoc device, and one solution for the epoc test card. The majority of solutions were highly portable and consisted of widely available, inexpensive components. The solutions demonstrated only partial or entirely questionable effectiveness in achieving temperature control. The search also identified five reports on the impact of storage temperatures on cartridges and test cards. The reports suggested that these reagents may be able to withstand storage at temperatures outside of manufacturer's claims with only minimal deterioration in performance. The heterogeneity of solutions and the paucity of evidence on their effectiveness suggest that additional strategies are needed to better understand and further address temperature-related challenges with these systems. A collaborative approach and shared decision making are recommended.


Assuntos
Serviços Médicos de Emergência , Humanos , Temperatura , Paramédico , Sistemas Automatizados de Assistência Junto ao Leito
3.
Artigo em Inglês | MEDLINE | ID: mdl-33688250

RESUMO

PURPOSE: Forkhead box Q1 (FOXQ1) has been shown to contribute to the development and progression of cancers, including ovarian and breast cancer (BC). However, research exploring FOXQ1 expression, copy number variation (CNV), and prognostic value across different BC subtypes is limited. Our purpose was to evaluate FOXQ1 mRNA expression, CNV, and prognostic value across BC subtypes. MATERIALS AND METHODS: We determined FOXQ1 expression and CNV in BC patient tumors using RT-qPCR and qPCR, respectively. We also analyzed FOXQ1 expression and CNV in BC cell lines in the CCLE database using K-means clustering. The prognostic value of FOXQ1 expression in the TCGA-BRCA database was assessed using univariate and multivariate Cox's regression analysis as well as using the online tools OncoLnc, GEPIA, and UALCAN. RESULTS: Our analyses reveal that FOXQ1 mRNA is differentially expressed between different subtypes of BC and is significantly decreased in luminal BC and HER2 patients when compared to normal breast tissue samples. Furthermore, analysis of BC cell lines showed that FOXQ1 mRNA expression was independent of CNV. Moreover, patients with low FOXQ1 mRNA expression had significantly poorer overall survival compared to those with high FOXQ1 mRNA expression. Finally, low FOXQ1 expression had a critical impact on the prognostic values of BC patients and was an independent predictor of overall survival when it was adjusted for BC subtypes and to two other FOX genes, FOXF2 and FOXM1. CONCLUSION: Our study reveals for the first time that FOXQ1 is differentially expressed across BC subtypes and that low expression of FOXQ1 is indicative of poor prognosis in patients with BC.

4.
Oncotarget ; 9(8): 8165-8178, 2018 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-29487724

RESUMO

In recent years, rapidly accumulating evidence implicates forkhead box C1 (FOXC1) in cancer, especially in studies of basal-like breast cancer (BLBC). Other studies have followed suit, demonstrating that FOXC1 is not only a major player in this breast cancer subtype, but also in hepatocellular carcinoma (HCC), endometrial cancer, Hodgkin's lymphoma (HL), and non-Hodgkin's lymphoma (NHL). The FOXC1 gene encodes a transcription factor that is crucial to mesodermal, neural crest, and ocular development, and mutations found in FOXC1 have been found to cause dominantly inherited Axenfeld-Rieger Syndrome (ARS). Interestingly, while FOXC1 missense mutations that are associated with ARS usually reduce gene activity, increased FOXC1 function now appears to be often linked to more aggressive cancer phenotypes in BLBC, HCC, HL, and NHL. This review discusses not only the role of FOXC1 in cancer cell progression, proliferation, differentiation, and metastasis, but also the underlying mechanisms of how FOXC1 can contribute to aggressive cancer phenotypes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA