Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biotechnol ; 135(3): 272-80, 2008 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-18499293

RESUMO

A BacMam baculovirus was designed in our laboratory to express the reporter protein secreted alkaline phosphatase (SEAP) driven by the immediate early promoter of human cytomegalovirus promoter (CMV). In vitro tests have been carried out using this recombinant baculovirus to study the secreted protein in two cell lines and under various culture conditions. The transductions were carried out on two commonly used mammalian cell lines namely the human embryonic kidney (HEK 293A) and Chinese hamster ovary (CHO-K1). Initial studies clearly demonstrated that the transient expression of SEAP was at least 10-fold higher in the HEK 293 cells than the CHO cells under equivalent experimental conditions. Factorial design experiments were done to study the effect of different parameters such as cell density, MOI, and the histone deacetylase inhibitor, trichostatin A concentration. The multiplicity of infection (MOI) and the cell density were found to have the most impact on the process. The enhancer trichostatin A also showed some positive effect. The production of secreted protein in a batch reactor was studied using the Wave disposable bioreactor system. A semi-continuous perfusion process was developed to extend the period of gene expression in mammalian cells using a hollow fiber bioreactor system (HFBR). The growth of cells and viability in both systems was monitored by offline analyses of metabolites. The expression of recombinant protein could be maintained over an extended period of time up to 30 days in the HFBR.


Assuntos
Fosfatase Alcalina/metabolismo , Baculoviridae/metabolismo , Reatores Biológicos , Transdução Genética , Análise de Variância , Animais , Células CHO , Linhagem Celular , Cricetinae , Cricetulus , Filtração , Vetores Genéticos , Humanos , Insetos
2.
Biotechnol Prog ; 16(5): 803-8, 2000.
Artigo em Inglês | MEDLINE | ID: mdl-11027174

RESUMO

On-line monitoring of insect cell cultures used for the production of recombinant proteins with the baculovirus expression vector system (BEVS) provides valuable tools for the optimization, operation, and control of the production process. The relative permittivity (epsilon') and CO(2) evolution rates (CER) were measured on-line using the biomass monitor and the infrared CO(2) analyzer, respectively. The growth and infection phases of two different cell lines, Spodoptera frugiperda (Sf-9) and Trichoplusia ni(High-5), were monitored using the above measurements. These in turn were correlated to the progress of the culture by using the off-line measurements of protein produced, virus titer, and biovolume, which is the product of viable cell density and mean cell volume. The epsilon', CER, and the biovolume profiles were closely matched during the growth phase of cells when grown in a batch or fed batch culture. The relationship became more complex when the cultures were either in stationary phase or in the postinfection phase. The epsilon' profile was found to be a good indicator of the process of synchronous baculoviral infection, showing a plateau between 18 and 24 h postinfection (hpi), the period during which budded virus is produced, and a peak at approximately 48 hpi correlated to the onset of accelerated cell lysis. The CER profile continues to increase after the growth period with a peak around the 24 hpi period, after which there is a decline in the profile corresponding to release of virus as seen from virus titer determinations. This was examined for Sf-9 cultures under conditions of cell densities from 3 to 50 x 10(6) cells/mL and MOI values ranging from 0.001 to 1000. The profiles were found to be similar also in the case of the High-5 cells. Thus both measurements give reliable information regarding the physiological status of the cells as seen from their correlation to virus and protein production. A further combination of these with the off-line measured parameters such as the biovolume and metabolite concentrations can give a more detailed understanding of the process and help in the better design and automation of these processes.


Assuntos
Divisão Celular , Mariposas/citologia , Animais , Baculoviridae/genética , Reatores Biológicos , Linhagem Celular , Mariposas/virologia
3.
Adv Biochem Eng Biotechnol ; 59: 47-71, 1998.
Artigo em Inglês | MEDLINE | ID: mdl-9435460

RESUMO

Proteins are important products used in industry. They may be enzymes which catalyze different reactions or they may be required for their biological activities as hormones, growth factors or therapeutics. During production and recovery, proteins are subjected to fluid forces which arise due to operations such as stirring, pumping and centrifugation. The resulting hydrodynamic shear forces may cause damage to the large molecular weight proteins, resulting in denaturation and inactivation of the protein. This is a major concern as it affects the overall efficiency of protein recovery and final yield of the product. A considerable amount of research has been devoted to studying the effects of hydrodynamic shear stress on proteins, especially with respect to the enzymes. Enzymes are subjected to shear stresses during their production in fermentors, during isolation and purification steps in downstream operations and also during their use in enzyme reactors, especially if stirred reactors are employed to perform enzyme catalysed reactions. The present review discusses the effects of fluid shear stress on proteins including enzymes. A brief description on deactivation has been included in order to understand the effect of shear on the deactivation kinetics of proteins. The model systems used to subject proteins to shear and some unit operations during protein processing or use wherein they are exposed to shear stresses have also been presented. The significance of shear effects in designing bioprocesses involving shear sensitive biocatalysts as well as suggestions for future work have also been given.


Assuntos
Conformação Proteica , Estresse Mecânico , Precipitação Química , Fermentação , Filtração , Cinética
4.
Biotechnol Bioeng ; 68(4): 381-8, 2000 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-10745206

RESUMO

Significant improvement in cell growth and protein production has been achieved in Sf-9 insect cell cultures using pulse additions of multicomponent nutrient feed concentrates (Bédard et al., 1994; Chan et al., 1998). The present work focuses on investigating an alternative feeding strategy wherein the nutrients are fed in a semi continuous manner. Fed batch culture experiments were carried out to compare the two different feeding strategies, pulse and semi continuous and a process developed to achieve a cell density of 5.2 x 10(7) cells/mL of Sf-9 cells in a 3.5 L bioreactor. Production of recombinant protein beta-galactosidase was carried out by infecting the cells with baculovirus at a MOI of 10 at cell densities of 17 x 10(6)cells/mL. Specific productivity could be maintained at cell densities as high as 14 x 10(6) cells/mL. The results presented indicate that the feeding method can provide significant improvements in the performance with a reduction in the amount of total nutrients added. On-line monitoring of the culture using the capacitance probe showed that the capacitance probe can be used successfully to monitor the biomass and infection process even at higher cell densities.


Assuntos
Técnicas de Cultura de Células/métodos , beta-Galactosidase/biossíntese , Animais , Contagem de Células , Divisão Celular , Meios de Cultura , Spodoptera
5.
Cytotechnology ; 28(1-3): 73-80, 1998 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19003409

RESUMO

Protein synthesis in mammalian cells can be observed in two strikingly different patterns: 1) production of monoclonal antibodies in hybridoma cultures is typically inverse growth associated and 2) production of most therapeutic glycoproteins in recombinant mammalian cell cultures is found to be growth associated. Production of monoclonal antibodies has been easily maximized by culturing hybridoma cells at very low growth rates in high cell density fed- batch or perfusion bioreactors. Applying the same bioreactor techniques to recombinant mammalian cell cultures results in drastically reduced production rates due to their growth associated production kinetics. Optimization of such growth associated production requires high cell growth conditions, such as in repeated batch cultures or chemostat cultures with attendant excess biomass synthesis. Our recent research has demonstrated that this growth associated production in recombinant Chinese hamster ovary (CHO) cells is related to the S (DNA synthesis)-phase specific production due to the SV40 early promoter commonly used for driving the foreign gene expression. Using the stably transfected CHO cell lines synthesizing an intracellular reporter protein under the control of SV40 early promoter, we have recently demonstrated in batch and continuous cultures that the product synthesis is growth associated. We have now replaced this S-phase specific promoter in new expression vectors with the adenovirus major late promoter which was found to be active primarily in the G1-phase and is expected to yield the desirable inverse growth associated production behavior. Our results in repeated batch cultures show that the protein synthesis kinetics in this resulting CHO cell line is indeed inverse growth associated. Results from continuous and high cell density perfusion culture experiments also indicate a strong inverse growth associated protein synthesis. The bioreactor optimization with this desirable inverse growth associated production behavior would be much simpler than bioreactor operation for cells with growth associated production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA