Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Neurosci ; 34(17): 6084-97, 2014 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-24760868

RESUMO

Tau is a microtubule-associated protein well known for its stabilization of microtubules in axons. Recently, it has emerged that tau participates in synaptic function as part of the molecular pathway leading to amyloid-beta (Aß)-driven synaptotoxicity in the context of Alzheimer's disease. Here, we report the implication of tau in the profound functional synaptic modification associated with synaptic plasticity. By exposing murine cultured cortical neurons to a pharmacological synaptic activation, we induced translocation of endogenous tau from the dendritic to the postsynaptic compartment. We observed similar tau translocation to the postsynaptic fraction in acute hippocampal slices subjected to long-term potentiation. When we performed live confocal microscopy on cortical neurons transfected with human-tau-GFP, we visualized an activity-dependent accumulation of tau in the postsynaptic density. Coprecipitation using phalloidin revealed that tau interacts with the most predominant cytoskeletal component present, filamentous actin. Finally, when we exposed cortical cultures to 100 nm human synthetic Aß oligomers (Aßo's) for 15 min, we induced mislocalization of tau into the spines under resting conditions and abrogated subsequent activity-dependent synaptic tau translocation. These changes in synaptic tau dynamics may rely on a difference between physiological and pathological phosphorylation of tau. Together, these results suggest that intense synaptic activity drives tau to the postsynaptic density of excitatory synapses and that Aßo-driven tau translocation to the spine deserves further investigation as a key event toward synaptotoxicity in neurodegenerative diseases.


Assuntos
Peptídeos beta-Amiloides/farmacologia , Córtex Cerebral/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Sinapses/efeitos dos fármacos , Proteínas tau/metabolismo , Animais , Células Cultivadas , Córtex Cerebral/metabolismo , Dendritos/efeitos dos fármacos , Dendritos/metabolismo , Camundongos , Neurônios/metabolismo , Fosforilação/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Sinapses/metabolismo
2.
Nat Genet ; 52(10): 1046-1056, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32989326

RESUMO

In addition to commonly associated environmental factors, genomic factors may cause cerebral palsy. We performed whole-exome sequencing of 250 parent-offspring trios, and observed enrichment of damaging de novo mutations in cerebral palsy cases. Eight genes had multiple damaging de novo mutations; of these, two (TUBA1A and CTNNB1) met genome-wide significance. We identified two novel monogenic etiologies, FBXO31 and RHOB, and showed that the RHOB mutation enhances active-state Rho effector binding while the FBXO31 mutation diminishes cyclin D levels. Candidate cerebral palsy risk genes overlapped with neurodevelopmental disorder genes. Network analyses identified enrichment of Rho GTPase, extracellular matrix, focal adhesion and cytoskeleton pathways. Cerebral palsy risk genes in enriched pathways were shown to regulate neuromotor function in a Drosophila reverse genetics screen. We estimate that 14% of cases could be attributed to an excess of damaging de novo or recessive variants. These findings provide evidence for genetically mediated dysregulation of early neuronal connectivity in cerebral palsy.


Assuntos
Paralisia Cerebral/genética , Proteínas F-Box/genética , Tubulina (Proteína)/genética , Proteínas Supressoras de Tumor/genética , beta Catenina/genética , Animais , Paralisia Cerebral/patologia , Ciclina D/genética , Citoesqueleto/genética , Drosophila/genética , Exoma/genética , Matriz Extracelular/genética , Feminino , Adesões Focais/genética , Predisposição Genética para Doença , Genoma Humano/genética , Humanos , Masculino , Mutação/genética , Neuritos/metabolismo , Neuritos/patologia , Fatores de Risco , Análise de Sequência de DNA , Transdução de Sinais/genética , Sequenciamento do Exoma , Proteína rhoB de Ligação ao GTP/genética
3.
Mol Biol Cell ; 29(2): 154-165, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29167379

RESUMO

In neurons, microtubule networks alternate between single filaments and bundled arrays under the influence of effectors controlling their dynamics and organization. Tau is a microtubule bundler that stabilizes microtubules by stimulating growth and inhibiting shrinkage. The mechanisms by which tau organizes microtubule networks remain poorly understood. Here, we studied the self-organization of microtubules growing in the presence of tau isoforms and mutants. The results show that tau's ability to induce stable microtubule bundles requires two hexapeptides located in its microtubule-binding domain and is modulated by its projection domain. Site-specific pseudophosphorylation of tau promotes distinct microtubule organizations: stable single microtubules, stable bundles, or dynamic bundles. Disease-related tau mutations increase the formation of highly dynamic bundles. Finally, cryo-electron microscopy experiments indicate that tau and its variants similarly change the microtubule lattice structure by increasing both the protofilament number and lattice defects. Overall, our results uncover novel phosphodependent mechanisms governing tau's ability to trigger microtubule organization and reveal that disease-related modifications of tau promote specific microtubule organizations that may have a deleterious impact during neurodegeneration.


Assuntos
Microtúbulos/ultraestrutura , Proteínas tau/química , Proteínas tau/ultraestrutura , Citoesqueleto de Actina/ultraestrutura , Microscopia Crioeletrônica , Humanos , Neurônios/metabolismo , Fosforilação , Ligação Proteica
4.
Methods Cell Biol ; 141: 199-214, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28882302

RESUMO

Microtubule and actin cytoskeletons are key players in vital processes in cells. Although the importance of microtubule-actin interaction for cell development and function has been highlighted for years, the properties of these two cytoskeletons have been mostly studied separately. Thus we now need procedures to simultaneously assess actin and microtubule properties to decipher the basic mechanisms underlying microtubule-actin crosstalk. Here we describe an in vitro assay that allows the coassembly of both filaments and the real-time observation of their interaction by TIRF microscopy. We show how this assay can be used to demonstrate that tau, a neuronal microtubule-associated protein, is a bona fide actin-microtubule cross-linker. The procedure relies on the use of highly purified proteins and chemically passivated perfusion chambers. We present a step-by-step protocol to obtain actin and microtubule coassembly and discuss the major pitfalls. An ImageJ macro to quantify actin and microtubule interaction is also provided.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Microscopia de Fluorescência/métodos , Microtúbulos/metabolismo , Proteínas tau/metabolismo , Humanos
6.
Sci Rep ; 5: 9964, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25944224

RESUMO

The crosstalk between microtubules and actin is essential for cellular functions. However, mechanisms underlying the microtubule-actin organization by cross-linkers remain largely unexplored. Here, we report that tau, a neuronal microtubule-associated protein, binds to microtubules and actin simultaneously, promoting in vitro co-organization and coupled growth of both networks. By developing an original assay to visualize concomitant microtubule and actin assembly, we show that tau can induce guided polymerization of actin filaments along microtubule tracks and growth of single microtubules along actin filament bundles. Importantly, tau mediates microtubule-actin co-alignment without changing polymer growth properties. Mutagenesis studies further reveal that at least two of the four tau repeated motifs, primarily identified as tubulin-binding sites, are required to connect microtubules and actin. Tau thus represents a molecular linker between microtubule and actin networks, enabling a coordination of the two cytoskeletons that might be essential in various neuronal contexts.


Assuntos
Actinas/química , Actinas/ultraestrutura , Microtúbulos/química , Microtúbulos/ultraestrutura , Proteínas tau/química , Proteínas tau/ultraestrutura , Citoesqueleto de Actina/química , Citoesqueleto de Actina/ultraestrutura , Sítios de Ligação , Reagentes de Ligações Cruzadas , Movimento (Física) , Ligação Proteica , Conformação Proteica
7.
Cell Rep ; 5(6): 1552-63, 2013 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-24373286

RESUMO

Abnormal accumulation of ß-secretase (BACE1) in dystrophic neurites and presynaptic ß-amyloid (Aß) production contribute to Alzheimer's disease pathogenesis. Little, however, is known about BACE1 sorting and dynamic transport in neurons. We investigated BACE1 trafficking in hippocampal neurons using live-cell imaging and selective labeling. We report that transport vesicles containing internalized BACE1 in dendrites undergo exclusive retrograde transport toward the soma, whereas they undergo bidirectional transport in axons. Unidirectional dendritic transport requires Eps15-homology-domain-containing (EHD) 1 and 3 protein function. Furthermore, loss of EHD function compromises dynamic axonal transport and overall BACE1 levels in axons. EHD1/3 colocalize with BACE1 and APP ß-C-terminal fragments in hippocampal mossy fiber terminals, and their depletion in neurons significantly attenuates Aß levels. These results demonstrate unidirectional endocytic transport of a dendritic cargo and reveal a role for EHD proteins in neuronal BACE1 transcytosis and Aß production, processes that are highly relevant for Alzheimer's disease.


Assuntos
Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Transporte Axonal , Proteínas de Transporte/metabolismo , Dendritos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Proteínas de Transporte/genética , Células Cultivadas , Células HEK293 , Células HeLa , Hipocampo/citologia , Hipocampo/metabolismo , Humanos , Camundongos , Transporte Proteico , Proteínas de Transporte Vesicular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA