Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Brain Behav Immun ; 104: 18-28, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35580792

RESUMO

Posttraumatic stress disorder (PTSD) is a debilitating psychiatric disorder which results in deleterious changes to psychological and physical health. Patients with PTSD are especially susceptible to life-threatening co-morbid inflammation-driven pathologies, such as autoimmunity, while also demonstrating increased T-helper 17 (TH17) lymphocyte-driven inflammation. While the exact mechanism of this increased inflammation is unknown, overactivity of the sympathetic nervous system is a hallmark of PTSD. Neurotransmitters of the sympathetic nervous system (i.e., catecholamines) can alter T-lymphocyte function, which we have previously demonstrated to be partially mitochondrial redox-mediated. Furthermore, we have previously elucidated that T-lymphocytes generate their own catecholamines, and strong associations exist between tyrosine hydroxylase (TH; the rate-limiting enzyme in the synthesis of catecholamines) and pro-inflammatory interleukin 17A (IL-17A) expression within purified T-lymphocytes in a rodent model of psychological trauma. Therefore, we hypothesized that T-lymphocyte-generated catecholamines drive TH17 T-lymphocyte polarization through a mitochondrial superoxide-dependent mechanism during psychological trauma. To test this, T-lymphocyte-specific TH knockout mice (THT-KO) were subjected to psychological trauma utilizing repeated social defeat stress (RSDS). RSDS characteristically increased tumor necrosis factor-α (TNFα), IL-6, IL-17A, and IL-22, however, IL-17A and IL-22 (TH17 produced cytokines) were selectively attenuated in circulation and in T-lymphocytes of THT-KO animals. When activated ex vivo, secretion of IL-17A and IL-22 by THT-KO T-lymphocytes was also found to be reduced, but could be partially rescued with supplementation of norepinephrine specifically. Interestingly, THT-KO T-lymphocytes were still able to polarize to TH17 under exogenous polarizing conditions. Last, contrary to our hypothesis, we found RSDS-exposed THT-KO T-lymphocytes still displayed elevated mitochondrial superoxide, suggesting increased mitochondrial superoxide is upstream of T-lymphocyte TH induction, activity, and TH17 regulation. Overall, these data demonstrate TH in T-lymphocytes plays a critical role in RSDS-induced TH17 T-lymphocytes and offer a previously undescribed regulator of inflammation in RSDS.


Assuntos
Interleucina-17 , Tirosina 3-Mono-Oxigenase , Animais , Camundongos , Humanos , Interleucina-17/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Derrota Social , Superóxidos/metabolismo , Células Th17/metabolismo , Catecolaminas/metabolismo , Inflamação/metabolismo
2.
Brain Behav Immun ; 90: 279-285, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32890698

RESUMO

Post-traumatic stress disorder (PTSD) is a psychiatric illness that results in an increased risk for a variety of inflammatory diseases. The exact etiology of this increased risk is unknown, and thus several animal models have been developed to investigate the neuroimmune interactions of PTSD. Repeated social defeat stress (RSDS) is an established preclinical model of psychological trauma that recapitulates certain behavioral and inflammatory aspects of human PTSD. Furthermore, RSDS has been utilized to subgroup animals into susceptible and resilient populations based on one specific behavioral phenotype (i.e., social interaction). Herein, we conducted an extensive investigation of circulating inflammatory proteins after RSDS and found significant elevations in various cytokines and chemokines after exposure to RSDS. When categorizing animals into either susceptible or resilient populations based on social interaction, we found no inflammatory or other behavioral differences between these subgroups. Furthermore, correlative analyses found no significant correlation between social interaction parameters and inflammation. In contrast, parameters from the elevated zero maze (EZM) demonstrated significant associations and clustering to five circulating cytokines. When animals were subdivided into susceptible and resilient populations solely based upon combined EZM performance, significant inflammatory differences were evident between these groups. Strikingly, these circulating inflammatory proteins displayed a stronger predictive ability of EZM performance compared to social interaction test performance. These findings provide new insights into inflammatory markers associated with RSDS, and the utility of EZM to effectively group RSDS-exposed mice into populations with differential levels of peripheral inflammation.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Estresse Psicológico , Animais , Comportamento Animal , Modelos Animais de Doenças , Inflamação , Camundongos , Camundongos Endogâmicos C57BL , Comportamento Social , Derrota Social
3.
Pharmacol Res ; 146: 104293, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31176794

RESUMO

The nervous and immune systems both serve as essential assessors and regulators of physiological function. Recently, there has been a great interest in how the nervous and immune systems interact to modulate both physiological and pathological states. In particular, the autonomic nervous system has a direct line of communication with immune cells anatomically, and moreover, immune cells possess receptors for autonomic neurotransmitters. This circumstantial evidence is suggestive of a functional interplay between the two systems, and extensive research over the past few decades has demonstrated neurotransmitters such as the catecholamines (i.e. dopamine, norepinephrine, and epinephrine) and acetylcholine have potent immunomodulating properties. Furthermore, immune cells, particularly T-lymphocytes, have now been found to express the cellular machinery for both the synthesis and degradation of neurotransmitters, which suggests the ability for both autocrine and paracrine signaling from these cells independent of the nervous system. The details underlying the functional interplay of this complex network of neuroimmune communication are still unclear, but this crosstalk is suggestive of significant implications on the pathogenesis of a number of autonomic-dysregulated and inflammation-mediated diseases. In particular, it is widely accepted that numerous forms of cardiovascular diseases possess imbalanced autonomic tone as well as altered T-lymphocyte function, but a paucity of literature exists discussing the direct role of neurotransmitters in shaping the inflammatory microenvironment during the progression or therapeutic management of these diseases. This review seeks to provide a fundamental framework for this autonomic neuroimmune interaction within T-lymphocytes, as well as the implications this may have in cardiovascular diseases.


Assuntos
Sistema Nervoso Autônomo/imunologia , Doenças Cardiovasculares/imunologia , Linfócitos T/imunologia , Animais , Humanos , Neuroimunomodulação/imunologia , Neurotransmissores/imunologia
4.
bioRxiv ; 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38895227

RESUMO

Background: Post-traumatic stress disorder (PTSD) is a debilitating psychological disorder that also presents with neuroimmune irregularities. Patients display elevated sympathetic tone and are at an increased risk of developing secondary autoimmune diseases. Previously, using a preclinical model of PTSD, we demonstrated that elimination of sympathetic signaling to T-lymphocytes specifically limited their ability to produce pro-inflammatory interleukin 17A (IL-17A); a cytokine implicated in the development of many autoimmune disorders. However, the mechanism linking sympathetic signaling to T-lymphocyte IL-17A production remained unclear. Methods: Using a modified version of repeated social defeat stress (RSDS) that allows for both males and females, we assessed the impact of adrenergic receptor blockade (genetically and pharmacologically) and catecholamine depletion on T-lymphocyte IL-17A generation. Additionally, we explored the impact of adrenergic signaling and T-lymphocyte-produced catecholamines on both CD4+ and CD8+ T-lymphocytes polarized to IL-17A-producing phenotypes ex vivo. Results: Only pharmacological inhibition of the beta 1 and 2 adrenergic receptors (ß1/2) significantly decreased circulating IL-17A levels after RSDS, but did not impact other pro-inflammatory cytokines (e.g., IL-6, TNF-α, and IL-10). This finding was confirmed using RSDS with both global ß1/2 receptor knock-out mice, as well as by adoptively transferring ß1/2 knock-out T-lymphocytes into immunodeficient hosts. Furthermore, ex vivo polarized T-lymphocytes produced significantly less IL-17A with the blockade of ß1/2 signaling, even in the absence of exogenous sympathetic neurotransmitter supplementation, which suggested T-lymphocyte-produced catecholamines may be involved in IL-17A production. Indeed, pharmacological depletion of catecholamines both in vivo and ex vivo abrogated T-lymphocyte IL-17A production demonstrating the importance of immune-generated neurotransmission in pro-inflammatory cytokine generation. Conclusions: Our data depict a novel role for ß1/2 adrenergic receptors and autologous catecholamine signaling during T-lymphocyte IL-17A production. These findings provide a new target for pharmacological therapy in both psychiatric and autoimmune diseases associated with IL-17A-related pathology.

5.
Biol Psychiatry Glob Open Sci ; 3(4): 919-929, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37881565

RESUMO

Background: Posttraumatic stress disorder, a consequence of psychological trauma, is associated with increased inflammation and an elevated risk of developing comorbid inflammatory diseases. However, the mechanistic link between this mental health disorder and inflammation remains elusive. We previously found that S100a8 and S100a9 messenger RNA, genes that encode the protein calprotectin, were significantly upregulated in T lymphocytes and positively correlated with inflammatory gene expression and the mitochondrial redox environment in these cells. Therefore, we hypothesized that genetic deletion of calprotectin would attenuate the inflammatory and redox phenotype displayed after psychological trauma. Methods: We used a preclinical mouse model of posttraumatic stress disorder known as repeated social defeat stress (RSDS) combined with pharmacological and genetic manipulation of S100a9 (which functionally eliminates calprotectin). A total of 186 animals (93 control, 93 RSDS) were used in these studies. Results: Unexpectedly, we observed worsening of behavioral pathology, inflammation, and the mitochondrial redox environment in mice after RSDS compared with wild-type animals. Furthermore, loss of calprotectin significantly enhanced the metabolic demand on T lymphocytes, suggesting that this protein may play an undescribed role in mitochondrial regulation. This was further supported by single-cell RNA sequencing analysis demonstrating that RSDS and loss of S100a9 primarily altered genes associated with mitochondrial function and oxidative phosphorylation. Conclusions: These data demonstrate that the loss of calprotectin potentiates the RSDS-induced phenotype, which suggests that its observed upregulation after psychological trauma may provide previously unexplored protective functions.

6.
Biol Psychiatry Glob Open Sci ; 3(4): 824-836, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37881577

RESUMO

Background: Posttraumatic stress disorder (PTSD) is a mental health condition triggered by exposure to traumatic events in an individual's life. Patients with PTSD are also at a higher risk for comorbidities. However, it is not well understood how PTSD affects human health and/or promotes the risk for comorbidities. Nevertheless, patients with PTSD harbor a proinflammatory milieu and dysbiotic gut microbiota. Gut barrier integrity helps to maintain normal gut homeostasis and its dysregulation promotes gut dysbiosis and inflammation. Methods: We used a mouse model of repeated social defeat stress (RSDS), a preclinical model of PTSD. Behavioral studies, metagenomics analysis of the microbiome, gut permeability assay (on mouse colon, using an Ussing chamber), immunoblotting, and immunohistochemical analyses were performed. Polarized intestinal epithelial cells and 3-dimensional crypt cultures were used for mechanistic analysis. Results: The RSDS mice harbor a heightened proinflammatory gut environment and microbiota dysbiosis. The RSDS mice further showed significant dysregulation of gut barrier functions, including transepithelial electrical resistance, mucin homeostasis, and antimicrobial responses. RSDS mice also showed a specific increase in intestinal expression of claudin-2, a tight junction protein, and epinephrine, a stress-induced neurotransmitter. Treating intestinal epithelial cells or 3-dimensional cultured crypts with norepinephrine or intestinal luminal contents (fecal contents) upregulated claudin-2 expression and inhibited transepithelial electrical resistance. Conclusions: Traumatic stress induces dysregulation of gut barrier functions, which may underlie the observed gut microbiota changes and proinflammatory gut milieu, all of which may have an interdependent effect on the health and increased risk of comorbidities in patients with PTSD.

7.
Physiol Rep ; 9(20): e15075, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34676696

RESUMO

Exercise has substantial health benefits, but the effects of exercise on immune status and susceptibility to respiratory infections are less clear. Furthermore, there is limited research examining the effects of prolonged exercise on local respiratory immunity and antiviral activity. To assess the upper respiratory tract in response to exercise, we collected nasal lavage fluid (NALF) from human subjects (1) at rest, (2) after 45 min of moderate-intensity exercise, and (3) after 180 min of moderate-intensity exercise. To assess immune responses of the lower respiratory tract, we utilized a murine model to examine the effect of exercise duration on bronchoalveolar lavage (BAL) fluid immune cell content and lung gene expression. NALF cell counts did not change after 45 min of exercise, whereas 180 min significantly increased total cells and leukocytes in NALF. Importantly, fold change in NALF leukocytes correlated with the post-exercise fatigue rating in the 180-min exercise condition. The acellular portion of NALF contained strong antiviral activity against Influenza A in both resting and exercise paradigms. In mice undergoing moderate-intensity exercise, BAL total cells and neutrophils decreased in response to 45 or 90 min of exercise. In lung lobes, increased expression of heat shock proteins suggested that cellular stress occurred in response to exercise. However, a broad upregulation of inflammatory genes was not observed, even at 180 min of exercise. This work demonstrates that exercise duration differentially alters the cellularity of respiratory tract fluids, antiviral activity, and gene expression. These changes in local mucosal immunity may influence resistance to respiratory viruses, including influenza or possibly other pathogens in which nasal mucosa plays a protective role, such as rhinovirus or SARS-CoV-2.


Assuntos
Exercício Físico/fisiologia , Vírus da Influenza A/imunologia , Leucócitos/imunologia , Pulmão/imunologia , Líquido da Lavagem Nasal/imunologia , Neutrófilos/imunologia , Adolescente , Adulto , Animais , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Feminino , Expressão Gênica , Humanos , Leucócitos/metabolismo , Pulmão/citologia , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Lavagem Nasal/métodos , Líquido da Lavagem Nasal/citologia , Mucosa Nasal/citologia , Mucosa Nasal/imunologia , Mucosa Nasal/metabolismo , Neutrófilos/metabolismo , Fatores de Tempo , Adulto Jovem
8.
Biol Psychiatry Glob Open Sci ; 1(3): 190-200, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35330608

RESUMO

Background: Post-traumatic stress disorder (PTSD) is a devastating psychological disorder. Patients with PTSD canonically demonstrate an increased risk for inflammatory diseases, as well as increased sympathetic tone and norepinephrine (NE) outflow. Yet, the exact etiology and causal nature of these physiologic changes remain unclear. Previously, we demonstrated that exogenous NE alters mitochondrial superoxide in T-lymphocytes to produce a pro-inflammatory T-helper 17 (TH17) phenotype, and observed similar TH17 polarization in a preclinical model of PTSD. Therefore, we hypothesized sympathetic-driven neuroimmune interactions could mediate psychological trauma-induced T-lymphocyte inflammation. Methods: Repeated social defeat stress (RSDS) is a preclinical murine model that recapitulates the behavioral, autonomic, and inflammatory aspects of PTSD. Targeted splenic denervation (Dnx) was performed to deduce the contribution of splenic sympathetic nerves to RSDS-induced inflammation. Eighty-five C57BL/6J mice underwent Dnx or sham-operation, followed by RSDS or control paradigms. Animals were assessed for behavioral, autonomic, inflammatory, and redox profiles. Results: Dnx did not alter the antisocial or anxiety-like behavior induced by RSDS. In circulation, RSDS Dnx animals exhibited diminished levels of T-lymphocyte-specific cytokines (IL-2, IL-17A, and IL-22) compared to intact animals, whereas other non-specific inflammatory cytokines (e.g., IL-6, TNF-α, and IL-10) were unaffected by Dnx. Importantly, Dnx specifically ameliorated the increases in RSDS-induced T-lymphocyte mitochondrial superoxide, TH17 polarization, and pro-inflammatory gene expression with minimal impact to non-T-lymphocyte immune populations. Conclusions: Overall, our data suggest that sympathetic nerves regulate RSDS-induced splenic T-lymphocyte inflammation, but play less of a role in the behavioral and non-T-lymphocyte inflammatory phenotypes induced by this psychological trauma paradigm.

9.
J Med Case Rep ; 13(1): 57, 2019 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-30853030

RESUMO

BACKGROUND: Nuclear protein in testis midline carcinoma is a rare, highly metastatic undifferentiated carcinoma that typically arises in midline structures and is characterized by having a fusion involving the nuclear protein in testis, NUT, gene. Nuclear protein in testis midline carcinoma has been identified in patients of all ages and is often initially misdiagnosed due to the rapid timeline of symptom onset. CASE PRESENTATION: Here we report the case of a 47-year-old Caucasian woman with a nuclear protein in testis midline carcinoma that was initially mistaken for a sinus infection. After symptom progression while on an aggressive antibiotic regimen, the source of her symptoms was correctly identified as a sella mass. Comprehensive analysis of the tumor was performed, and standard cytogenetic analysis identified a translocation of 15q and 19p. Further testing identified a NUT-BRD4 fusion and confirmed the diagnosis of nuclear protein in testis midline carcinoma. Despite definitive diagnosis and surgical, radiation, and, ultimately, systemic therapy, she progressed rapidly, developing widespread metastases, and ultimately died from the disease 5 months after diagnosis. CONCLUSIONS: Based on this and other previous reports, aggressive therapy should be initiated once nuclear protein in testis midline carcinoma is diagnosed and close surveillance employed in an attempt to prevent and/or recognize metastases as early as possible. Aggressive therapy has shown little efficacy such that the average overall survival for patients with nuclear protein in testis midline carcinoma is very short, often less than 6 months. Thus, early enrollment into clinical trials testing novel therapies for the treatment of nuclear protein in testis midline carcinoma should be considered. Finally, additional reports of nuclear protein in testis midline carcinoma are needed to fully characterize this rare and highly aggressive cancer.


Assuntos
Carcinoma/diagnóstico , Neoplasias de Cabeça e Pescoço/diagnóstico , Proteínas Nucleares/genética , Proteínas de Fusão Oncogênica/genética , Proteínas Oncogênicas/genética , Biomarcadores Tumorais/genética , Carcinoma/genética , Carcinoma/terapia , Quimiorradioterapia , Diagnóstico Diferencial , Evolução Fatal , Feminino , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/terapia , Humanos , Pessoa de Meia-Idade , Mutação/genética , Proteínas de Neoplasias , Sinusite
10.
Front Behav Neurosci ; 13: 103, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31139062

RESUMO

Patients diagnosed with post-traumatic stress disorder (PTSD) are at a significantly elevated risk of developing comorbid inflammatory conditions, but the mechanisms underlying this predilection remain unclear. Our previous work has shown that T-lymphocytes exposed to elevated levels of norepinephrine (NE) displayed a pro-inflammatory signature reminiscent of an autoreactive phenotype. With this, we hypothesized that the increased sympathetic tone observed during psychological trauma may be promoting pro-inflammatory T-lymphocytes, which causes a predisposition to comorbid inflammatory conditions. Here, we examined the consequences of psychological trauma on splenic T-lymphocytes using a mouse model of repeated social defeat stress. Social defeat led to anxiety-like and depression-like behavior as has been previously described. The spleens of socially-defeated mice showed significant elevations of NE, tyrosine hydroxylase (TH), and acetylcholinesterase (ACHE) levels, which appeared to be due in part to increased expression within T-lymphocytes. Additionally, T-lymphocytes from stressed animals showed higher levels of pro-inflammatory cytokines and mitochondrial superoxide. Interestingly, in this model system, close associations exist within splenic T-lymphocytes amid the autonomic, inflammatory, and redox environments, but these only weakly correlate with individual behavioral differences among animals suggesting the psychological and physiological manifestations of trauma may not be tightly coupled. Last, we describe, for the first time, elevations in calprotectin levels within T-lymphocytes and in circulation of psychologically stressed animals. Calprotectin correlated with both behavioral and physiological changes after social defeat, suggesting the potential for a new biological marker and/or therapeutic target for psychological trauma and its inflammatory comorbidities.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA