RESUMO
We present an octave-spanning Ti:sapphire oscillator supporting Fourier-limited pulses as short as 3.7 fs. This laser system can be directly CEO-phase stabilized delivering an average output power of about 90 mW with a pulse duration of 4.4 fs. The phase-stabilization is realized without additional spectral broadening using an f-2f interferometer approach allowing for full control of the electric pulse field on a sub-femtosecond time-scale.
Assuntos
Eletrônica/instrumentação , Lasers , Modelos Teóricos , Oscilometria/instrumentação , Processamento de Sinais Assistido por Computador/instrumentação , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Espalhamento de RadiaçãoRESUMO
We demonstrate a new concept to vary the carrier-envelope phase of a mode-locked laser by a composite plate while keeping all other pulse parameters practically unaltered. The effect is verified externally in an interferometric autocorrelator, as well as inside the cavity of an octave-spanning femtosecond oscillator. The carrier-envelope frequency can be shifted by half the repetition rate with negligible impact on pulse spectrum and energy.
RESUMO
Carrier-envelope phase stabilization of a 200MHz octave-spanning Ti:sapphire laser without external broadening is demonstrated. The individual comb lines spaced by 200MHz can conveniently be resolved using commercial wavemeters. The accumulated in-loop carrier-envelope phase error (integrated from 2.5 mHz to 10 MHz) using a broadband analog mixer as phase detector is 0.117 rad, equivalent to 50 attosecond carrier-envelope phase jitter at 800 nm.
RESUMO
We investigate the modelocking dynamics of quasi-synchronously pumped, dispersion managed Kerr-lens modelocked Titanium-Sapphire lasers. For the first time, self-starting few-cycle laser pulses with 6 fs pulse duration and ultrabroadband optical spectra are demonstrated without using any intracavity elements like saturable absorbers.
RESUMO
We present a new method for measuring the spectral phase of ultrashort pulses that utilizes spectral shearing interferometry with zero delay. Unlike conventional spectral phase interferometry for direct electric-field reconstruction, which encodes phase as a sensitively calibrated fringe in the spectral domain, two-dimensional spectral shearing interferometry robustly encodes phase along a second dimension. This greatly reduces demands on the spectrometer and allows for complex phase spectra to be measured over extremely large bandwidths, potentially exceeding 1.5 octaves.
RESUMO
We demonstrate 10-fs pulses from a diode-pumped, soft-aperture Kerr lens mode-locked Cr3+:LiCAF laser with a spectral bandwidth of 150 nm and 40 mW of output power at a repetition rate of 110 MHz. For dispersion compensation, double-chirped mirrors and prisms are used. The pulses are characterized by use of spectral shearing interferometry.