Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Blood ; 141(20): 2508-2519, 2023 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-36800567

RESUMO

Proinflammatory signaling is a hallmark feature of human cancer, including in myeloproliferative neoplasms (MPNs), most notably myelofibrosis (MF). Dysregulated inflammatory signaling contributes to fibrotic progression in MF; however, the individual cytokine mediators elicited by malignant MPN cells to promote collagen-producing fibrosis and disease evolution are yet to be fully elucidated. Previously, we identified a critical role for combined constitutive JAK/STAT and aberrant NF-κB proinflammatory signaling in MF development. Using single-cell transcriptional and cytokine-secretion studies of primary cells from patients with MF and the human MPLW515L (hMPLW515L) murine model of MF, we extend our previous work and delineate the role of CXCL8/CXCR2 signaling in MF pathogenesis and bone marrow fibrosis progression. Hematopoietic stem/progenitor cells from patients with MF are enriched for a CXCL8/CXCR2 gene signature and display enhanced proliferation and fitness in response to an exogenous CXCL8 ligand in vitro. Genetic deletion of Cxcr2 in the hMPLW515L-adoptive transfer model abrogates fibrosis and extends overall survival, and pharmacologic inhibition of the CXCR1/2 pathway improves hematologic parameters, attenuates bone marrow fibrosis, and synergizes with JAK inhibitor therapy. Our mechanistic insights provide a rationale for therapeutic targeting of the CXCL8/CXCR2 pathway among patients with MF.


Assuntos
Transtornos Mieloproliferativos , Neoplasias , Mielofibrose Primária , Humanos , Camundongos , Animais , Mielofibrose Primária/patologia , Transtornos Mieloproliferativos/genética , Transdução de Sinais , Neoplasias/complicações , Citocinas/metabolismo , Janus Quinase 2/genética , Janus Quinase 2/metabolismo
2.
Leukemia ; 36(3): 733-745, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34642468

RESUMO

Current therapy for myelofibrosis (MF) results in a limited prolongation of patient survival. In order to improve treatment outcomes, we developed a strategy to effectively deplete MF hematopoietic stem/progenitor cells (HSPCs). In the present study, an imipridone, ONC201, was combined with RG7112, an antagonist of MDM2, a p53 negative regulator, to activate downstream events of the p53 and TNF-related apoptosis-inducing ligand (TRAIL)/death receptor (DR) pathways. As compared to treatment with the individual drugs, the combination of ONC201 and RG7112 promoted greater degrees of apoptosis of MF CD34+ cells through activation of both p53-dependent and -independent pathways. Importantly, treatment with ONC201-RG7112 not only decreased the number of JAK2V617F+ and calreticulin mutated colonies assayed from MF CD34+ cells, but allowed for the persistence or appearance of JAK2 wild type colonies. Treatment with ONC201 combined with RG7112 could be a potentially effective strategy for treating MF patients.


Assuntos
Antineoplásicos/farmacologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Imidazóis/farmacologia , Imidazolinas/farmacologia , Mielofibrose Primária/tratamento farmacológico , Piridinas/farmacologia , Pirimidinas/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Células Cultivadas , Sistemas de Liberação de Medicamentos , Células-Tronco Hematopoéticas/metabolismo , Humanos , Mielofibrose Primária/metabolismo , Transdução de Sinais/efeitos dos fármacos
3.
Nat Commun ; 13(1): 2323, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484119

RESUMO

Adverse prognosis in Ewing sarcoma (ES) is associated with the presence of metastases, particularly in bone, tumor hypoxia and chromosomal instability (CIN). Yet, a mechanistic link between these factors remains unknown. We demonstrate that in ES, tumor hypoxia selectively exacerbates bone metastasis. This process is triggered by hypoxia-induced stimulation of the neuropeptide Y (NPY)/Y5 receptor (Y5R) pathway, which leads to RhoA over-activation and cytokinesis failure. These mitotic defects result in the formation of polyploid ES cells, the progeny of which exhibit high CIN, an ability to invade and colonize bone, and a resistance to chemotherapy. Blocking Y5R in hypoxic ES tumors prevents polyploidization and bone metastasis. Our findings provide evidence for the role of the hypoxia-inducible NPY/Y5R/RhoA axis in promoting genomic changes and subsequent osseous dissemination in ES, and suggest that targeting this pathway may prevent CIN and disease progression in ES and other cancers rich in NPY and Y5R.


Assuntos
Neoplasias Ósseas , Sarcoma de Ewing , Neoplasias Ósseas/genética , Instabilidade Cromossômica , Humanos , Hipóxia , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo , Receptores de Neuropeptídeo Y/genética , Receptores de Neuropeptídeo Y/metabolismo , Sarcoma de Ewing/patologia , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA