Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
J Immunother Cancer ; 7(1): 244, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31511088

RESUMO

BACKGROUND: Immune checkpoint blockade (ICB) promotes adaptive immunity and tumor regression in some cancer patients. However, in patients with immunologically "cold" tumors, tumor-resident innate immune cell activation may be required to prime an adaptive immune response and so exploit the full potential of ICB. Whilst Toll-like receptor (TLR) agonists have been used topically to successfully treat some superficial skin tumors, systemic TLR agonists have not been well-tolerated. METHODS: The response of human immune cells to TLR7 and 8 agonism was measured in primary human immune cell assays. MEDI9197 (3M-052) was designed as a novel lipophilic TLR7/8 agonist that is retained at the injection site, limiting systemic exposure. Retention of the TLR7/8 agonist at the site of injection was demonstrated using quantitative whole-body autoradiography, HPLC-UV, and MALDI mass spectrometry imaging. Pharmacodynamic changes on T cells from TLR7/8 agonist treated B16-OVA tumors was assessed by histology, quantitative real time PCR, and flow cytometry. Combination activity of TLR7/8 agonism with immunotherapies was assessed in vitro by human DC-T cell MLR assay, and in vivo using multiple syngeneic mouse tumor models. RESULTS: Targeting both TLR7 and 8 triggers an innate and adaptive immune response in primary human immune cells, exemplified by secretion of IFNα, IL-12 and IFNγ. In contrast, a STING or a TLR9 agonist primarily induces release of IFNα. We demonstrate that the TLR7/8 agonist, MEDI9197, is retained at the sight of injection with limited systemic exposure. This localized TLR7/8 agonism leads to Th1 polarization, enrichment and activation of natural killer (NK) and CD8+ T cells, and inhibition of tumor growth in multiple syngeneic models. The anti-tumor activity of this TLR7/8 agonist is enhanced when combined with T cell-targeted immunotherapies in pre-clinical models. CONCLUSION: Localized TLR7/8 agonism can enhance recruitment and activation of immune cells in tumors and polarize anti-tumor immunity towards a Th1 response. Moreover, we demonstrate that the anti-tumor effects of this TLR7/8 agonist can be enhanced through combination with checkpoint inhibitors and co-stimulatory agonists.


Assuntos
Células Dendríticas/imunologia , Compostos Heterocíclicos com 3 Anéis/farmacologia , Células Matadoras Naturais/imunologia , Melanoma Experimental/tratamento farmacológico , Ácidos Esteáricos/farmacologia , Receptor 7 Toll-Like/agonistas , Receptor 8 Toll-Like/agonistas , Microambiente Tumoral/imunologia , Imunidade Adaptativa , Adjuvantes Imunológicos/farmacologia , Animais , Apoptose , Proliferação de Células , Feminino , Humanos , Imunoterapia , Masculino , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Ovalbumina/imunologia , Ratos Sprague-Dawley , Células Tumorais Cultivadas
2.
NPJ Vaccines ; 3: 22, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29900011

RESUMO

Amebiasis caused by Entamoeba histolytica is the third leading cause of parasitic mortality globally, with some 100,000 deaths annually, primarily among young children. Protective immunity to amebiasis is associated with fecal IgA and IFN-γ in humans; however, no vaccine exists. We have previously identified recombinant LecA as a potential protective vaccine antigen. Here we describe the development of a stable, manufacturable PEGylated liposomal adjuvant formulation containing two synthetic Toll-like receptor (TLR) ligands: GLA (TLR4) and 3M-052 (TLR7/8). The liposomes stimulated production of monocyte/macrophage chemoattractants MCP-1 and Mip-1ß, and Th1-associated cytokines IL-12p70 and IFN-γ from human whole blood dependent on TLR ligand composition and dose. The liposomes also demonstrated acceptable physicochemical compatibility with the recombinant LecA antigen. Whereas mice immunized with LecA and GLA-liposomes demonstrated enhanced antigen-specific fecal IgA titers, mice immunized with LecA and 3M-052-liposomes showed a stronger Th1 immune profile. Liposomes containing GLA and 3M-052 together elicited both LecA-specific fecal IgA and Th1 immune responses. Furthermore, the quality of the immune response could be modulated with modifications to the liposomal formulation based on PEG length. Compared to subcutaneous administration, the optimized liposome adjuvant composition with LecA antigen administered intranasally resulted in significantly enhanced fecal IgA, serum IgG2a, as well as systemic IFN-γ and IL-17A levels in mice. The optimized intranasal regimen provided greater than 80% protection from disease as measured by parasite antigen in the colon. This work demonstrates the physicochemical and immunological characterization of an optimized mucosal adjuvant system containing a combination of TLR ligands with complementary activities and illustrates the importance of adjuvant composition and route of delivery to enhance a multifaceted and protective immune response to amebiasis.

3.
Vaccine ; 35(6): 916-922, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28089548

RESUMO

Diarrheal infectious diseases represent a major cause of global morbidity and mortality. There is an urgent need for vaccines against diarrheal pathogens, especially parasites. Modern subunit vaccines rely on combining a highly purified antigen with an adjuvant to increase their efficacy. In the present study, we evaluated the ability of a nanoliposome adjuvant system to trigger a strong mucosal immune response to the Entamoeba histolytica Gal/GalNAc lectin LecA antigen. CBA/J mice were immunized with alum, emulsion or liposome based formulations containing synthetic TLR agonists. A liposome formulation containing TLR4 and TLR7/8 agonists was selected based on its ability to generate intestinal IgA, plasma IgG2a/IgG1, IFN-γ and IL-17A. Immunization with a mucosal prime followed by a parenteral boost generated a high mucosal IgA response that inhibited adherence of parasites to mammalian cells. Inclusion of the immune potentiator all-trans retinoic acid in the regimen further improved the mucosal IgA response. Immunization protected from infection with up to 55% efficacy. Our results show that a nanoliposome delivery system containing TLR agonists is a promising prospect for the development of vaccines against enteric pathogens, especially when a multifaceted immune response is desired.


Assuntos
Anticorpos Antiprotozoários/biossíntese , Entamoeba histolytica/efeitos dos fármacos , Entamebíase/prevenção & controle , Imunidade nas Mucosas/efeitos dos fármacos , Lipossomos/imunologia , Vacinas Protozoárias/administração & dosagem , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/química , Compostos de Alúmen/administração & dosagem , Animais , Antígenos de Protozoários/química , Antígenos de Protozoários/imunologia , Entamoeba histolytica/crescimento & desenvolvimento , Entamoeba histolytica/imunologia , Entamebíase/imunologia , Entamebíase/parasitologia , Imunização , Interferon gama/biossíntese , Interferon gama/imunologia , Interleucina-17/biossíntese , Interleucina-17/imunologia , Lectinas/química , Lectinas/imunologia , Lipopolissacarídeos/administração & dosagem , Lipossomos/administração & dosagem , Lipossomos/química , Glicoproteínas de Membrana/agonistas , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Endogâmicos CBA , Oligodesoxirribonucleotídeos/administração & dosagem , Polissorbatos/administração & dosagem , Vacinas Protozoárias/química , Vacinas Protozoárias/imunologia , RNA/administração & dosagem , Esqualeno/administração & dosagem , Receptor 3 Toll-Like/agonistas , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/imunologia , Receptor 7 Toll-Like/agonistas , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/imunologia , Receptor 8 Toll-Like/agonistas , Receptor 8 Toll-Like/genética , Receptor 8 Toll-Like/imunologia , Tretinoína/administração & dosagem , Vacinas de Subunidades Antigênicas
4.
J Pharm Sci ; 106(8): 2037-2045, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28456734

RESUMO

Toll-like receptor (TLR) agonists TLR 7/8, MEDI9197, is a imidazoquinoline analogue that can be used for cancer immunotherapy based on its efficacy toward a variety of tumors. Systemic administration of TLR agonists results in stimulation of the immune system throughout the entire body causing undesirable side effects. To minimize these adverse events, local administration of TLR agonists including intratumoral (IT) delivery has been introduced. Here, a poloxamer 407 thermogel formulation for IT delivery of a TLR 7/8 dual agonist, MEDI9197, is described in which the combination of the aqueous thermogel and the ethanolic TLR 7/8 dual agonist, MEDI9197, solution leads to precipitated drug particles within the gel. The in vitro release profile showed an initial burst followed by sustained release. A B16-OVA mouse tumor model was used to assess the in vivo pharmacokinetics, efficacy, and systemic cytokine and chemokine (cytokine) production of the poloxamer 407-based thermogel formulation. The pharmacokinetic evaluation showed that the agonist level within the tumor was reduced by ∼70% over 14 days while serum agonist levels indicated an initial burst at the 6-h time point followed by a drop in serum drug levels over the 14 days of the experiment. The tumor growth inhibition, survival, and serum cytokines for post-IT injection of the poloxamer 407 formulation showed that it slowly released TLR 7/8 agonist, MEDI9197, resulting in more efficacious tumor growth inhibition compared with control groups. In addition, the cytokine levels in circulation indicated that a dose increase led to a decrease in the serum inflammatory and interferon-inducible cytokines levels. This observation could be due to a reduction of drug diffusion and escape from the tumor site due to the precipitation of the drug inside the tumor leading to sustained release. IT delivery of TLR 7/8 dual agonist, MEDI9197, via a thermosensitive gel-based formulation was efficacious and could offer an alternate method of local drug delivery.


Assuntos
Antineoplásicos/administração & dosagem , Preparações de Ação Retardada/química , Compostos Heterocíclicos com 3 Anéis/administração & dosagem , Melanoma Experimental/tratamento farmacológico , Poloxâmero/química , Ácidos Esteáricos/administração & dosagem , Receptor 7 Toll-Like/agonistas , Receptor 8 Toll-Like/agonistas , Animais , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapêutico , Citocinas/sangue , Citocinas/imunologia , Sistemas de Liberação de Medicamentos , Feminino , Géis/química , Compostos Heterocíclicos com 3 Anéis/farmacocinética , Compostos Heterocíclicos com 3 Anéis/uso terapêutico , Melanoma Experimental/sangue , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Ácidos Esteáricos/farmacocinética , Ácidos Esteáricos/uso terapêutico , Temperatura , Receptor 7 Toll-Like/imunologia , Receptor 8 Toll-Like/imunologia
5.
Sci Rep ; 7: 46426, 2017 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-28429728

RESUMO

Since 1997, highly pathogenic avian influenza viruses of the H5N1 subtype have been transmitted from avian hosts to humans. The severity of H5N1 infection in humans, as well as the sporadic nature of H5N1 outbreaks, both geographically and temporally, make generation of an effective vaccine a global public health priority. An effective H5N1 vaccine must ultimately provide protection against viruses from diverse clades. Toll-like receptor (TLR) agonist adjuvant formulations have a demonstrated ability to broaden H5N1 vaccine responses in pre-clinical models. However, many of these agonist molecules have proven difficult to develop clinically. Here, we describe comprehensive adjuvant formulation development of the imidazoquinoline TLR-7/8 agonist 3M-052, in combination with H5N1 hemagglutinin (HA) based antigens. We find that 3M-052 in multiple formulations protects both mice and ferrets from lethal H5N1 homologous virus challenge. Furthermore, we conclusively demonstrate the ability of 3M-052 adjuvant formulations to broaden responses to H5N1 HA based antigens, and show that this broadening is functional using a heterologous lethal virus challenge in ferrets. Given the extensive clinical use of imidazoquinoline TLR agonists for other indications, these studies identify multiple adjuvant formulations which may be rapidly advanced into clinical trials in an H5N1 vaccine.


Assuntos
Adjuvantes Imunológicos , Virus da Influenza A Subtipo H5N1/imunologia , Vacinas contra Influenza , Influenza Humana/prevenção & controle , Receptor 7 Toll-Like/agonistas , Receptor 8 Toll-Like/agonistas , Humanos
6.
J Control Release ; 244(Pt A): 98-107, 2016 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-27847326

RESUMO

For nearly a century, aluminum salts have been the most widely used vaccine adjuvant formulation, and have thus established a history of safety and efficacy. Nevertheless, for extremely challenging disease targets such as tuberculosis or HIV, the adjuvant activity of aluminum salts may not be potent enough to achieve protective efficacy. Adsorption of TLR ligands to aluminum salts facilitates enhanced adjuvant activity, such as in the human papilloma virus vaccine Cervarix®. However, some TLR ligands such as TLR7/8 agonist imidazoquinolines do not efficiently adsorb to aluminum salts. The present report describes a formulation approach to solving this challenge by developing a lipid-based nanosuspension of a synthetic TLR7/8 ligand (3M-052) that facilitates adsorption to aluminum oxyhydroxide via the structural properties of the helper lipid employed. In immunized mice, the aluminum oxyhydroxide-adsorbed formulation of 3M-052 enhanced antibody and TH1-type cellular immune responses to vaccine antigens for tuberculosis and HIV.


Assuntos
Adjuvantes Imunológicos/química , Hidróxido de Alumínio/química , Óxido de Alumínio/química , Imidazóis/química , Nanopartículas/química , Quinolinas/química , Receptor 7 Toll-Like/metabolismo , Receptor 8 Toll-Like/metabolismo , Vacinas contra a AIDS/imunologia , Adsorção , Animais , Estabilidade de Medicamentos , Humanos , Imidazóis/imunologia , Imunidade Celular , Imunidade Humoral , Ligantes , Lipídeos/química , Camundongos , Camundongos Endogâmicos C57BL , Tamanho da Partícula , Quinolinas/imunologia , Propriedades de Superfície , Vacinas contra a Tuberculose/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA