Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
BMC Biol ; 20(1): 11, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34996447

RESUMO

BACKGROUND: Women facing increased energetic demands in childhood commonly have altered adult ovarian activity and shorter reproductive lifespan, possibly comprising a strategy to optimize reproductive success. Here, we sought to understand the mechanisms of early-life programming of reproductive function, by integrating analysis of reproductive tissues in an appropriate mouse model with methylation analysis of proxy tissue DNA in a well-characterized population of Bangladeshi migrants in the UK. Bangladeshi women whose childhood was in Bangladesh were found to have later pubertal onset and lower age-matched ovarian reserve than Bangladeshi women who grew-up in England. Subsequently, we aimed to explore the potential relevance to the altered reproductive phenotype of one of the genes that emerged from the screens. RESULTS: Of the genes associated with differential methylation in the Bangladeshi women whose childhood was in Bangladesh as compared to Bangladeshi women who grew up in the UK, 13 correlated with altered expression of the orthologous gene in the mouse model ovaries. These mice had delayed pubertal onset and a smaller ovarian reserve compared to controls. The most relevant of these genes for reproductive function appeared to be SRD5A1, which encodes the steroidogenic enzyme 5α reductase-1. SRD5A1 was more methylated at the same transcriptional enhancer in mice ovaries as in the women's buccal DNA, and its expression was lower in the hypothalamus of the mice as well, suggesting a possible role in the central control of reproduction. The expression of Kiss1 and Gnrh was also lower in these mice compared to controls, and inhibition of 5α reductase-1 reduced Kiss1 and Gnrh mRNA levels and blocked GnRH release in GnRH neuronal cell cultures. Crucially, we show that inhibition of this enzyme in female mice in vivo delayed pubertal onset. CONCLUSIONS: SRD5A1/5α reductase-1 responds epigenetically to the environment and its downregulation appears to alter the reproductive phenotype. These findings help to explain diversity in reproductive characteristics and how they are shaped by early-life environment and reveal novel pathways that might be targeted to mitigate health issues caused by life-history trade-offs.


Assuntos
3-Oxo-5-alfa-Esteroide 4-Desidrogenase/metabolismo , Colestenona 5 alfa-Redutase , Kisspeptinas , Proteínas de Membrana/metabolismo , Adaptação Fisiológica , Animais , Colestenona 5 alfa-Redutase/genética , Colestenona 5 alfa-Redutase/metabolismo , Epigênese Genética , Feminino , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Humanos , Kisspeptinas/genética , Kisspeptinas/metabolismo , Camundongos
2.
J Immunol ; 203(1): 148-157, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31118225

RESUMO

MicroRNAs are small, noncoding RNAs that function as posttranscriptional modulators of gene expression by binding target mRNAs and inhibiting translation. They are therefore crucial regulators of several biological as well as immunological events. Recently, miR-511-3p has been implicated in the development and differentiation of APCs, such as dendritic cells (DCs), and regulating several human diseases. Interestingly, miR-511-3p is embedded within the human MRC1 gene that encodes the mannose receptor. In this study, we sought to examine the impact of miR-511-3p up- or downregulation on human DC surface phenotype, cytokine profile, immunogenicity (using IDO activity as a surrogate), and downstream T cell polarization. Using gene silencing and a selection of microRNA mimics, we could successfully suppress or induce the expression of miR-511-3p in DCs. Consequently, we show for the first time, to our knowledge, that inhibition and/or overexpression of miR-511-3p has opposing effects on the expression levels of two key C-type lectin receptors, namely the mannose receptor and DC-specific ICAM 3 nonintegrin at protein and mRNA levels, thereby affecting C-type lectin receptor-induced modulation of IDO activity in DCs. Furthermore, we show that downregulation of miR-511-3p drives an anti-inflammatory DC response characterized by IL-10 production. Interestingly, the miR-511-3plow DCs also promoted IL-4 secretion and suppressed IL-17 in cocultures with autologous T cells. Together, our data highlight the potential role of miR-511 in regulating DC function and downstream events leading to Th polarization and immune modulation.


Assuntos
Células Dendríticas/fisiologia , Lectinas Tipo C/metabolismo , MicroRNAs/genética , Linfócitos T Auxiliares-Indutores/imunologia , Diferenciação Celular , Células Cultivadas , Técnicas de Cocultura , Regulação da Expressão Gênica , Humanos , Imunomodulação , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Molécula 3 de Adesão Intercelular/genética , Molécula 3 de Adesão Intercelular/metabolismo , Interleucina-10/metabolismo , Interleucina-4/metabolismo , Ativação Linfocitária , RNA Interferente Pequeno/genética , Receptor Cross-Talk
3.
Proc Natl Acad Sci U S A ; 115(40): 10064-10069, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30150380

RESUMO

The association between poor paternal diet, perturbed embryonic development, and adult offspring ill health represents a new focus for the Developmental Origins of Health and Disease hypothesis. However, our understanding of the underlying mechanisms remains ill-defined. We have developed a mouse paternal low-protein diet (LPD) model to determine its impact on semen quality, maternal uterine physiology, and adult offspring health. We observed that sperm from LPD-fed male mice displayed global hypomethylation associated with reduced testicular expression of DNA methylation and folate-cycle regulators compared with normal protein diet (NPD) fed males. Furthermore, females mated with LPD males display blunted preimplantation uterine immunological, cell signaling, and vascular remodeling responses compared to controls. These data indicate paternal diet impacts on offspring health through both sperm genomic (epigenetic) and seminal plasma (maternal uterine environment) mechanisms. Extending our model, we defined sperm- and seminal plasma-specific effects on offspring health by combining artificial insemination with vasectomized male mating of dietary-manipulated males. All offspring derived from LPD sperm and/or seminal plasma became heavier with increased adiposity, glucose intolerance, perturbed hepatic gene expression symptomatic of nonalcoholic fatty liver disease, and altered gut bacterial profiles. These data provide insight into programming mechanisms linking poor paternal diet with semen quality and offspring health.


Assuntos
Exposição Dietética , Proteínas Alimentares/administração & dosagem , Exposição Paterna , Sêmen/metabolismo , Espermatozoides/metabolismo , Testículo/metabolismo , Animais , Epigênese Genética/efeitos dos fármacos , Feminino , Masculino , Camundongos , Análise do Sêmen , Útero/metabolismo
4.
Int J Mol Sci ; 22(4)2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33673278

RESUMO

One-carbon (1C) metabolism provides methyl groups for the synthesis and/or methylation of purines and pyrimidines, biogenic amines, proteins, and phospholipids. Our understanding of how 1C pathways operate, however, pertains mostly to the (rat) liver. Here we report that transcripts for all bar two genes (i.e., BHMT, MAT1A) encoding enzymes in the linked methionine-folate cycles are expressed in all cell types within the ovarian follicle, oocyte, and blastocyst in the cow, sheep, and pig; as well as in rat granulosa cells (GCs) and human KGN cells (a granulosa-like tumor cell line). Betaine-homocysteine methyltransferase (BHMT) protein was absent in bovine theca and GCs, as was activity of this enzyme in GCs. Mathematical modeling predicted that absence of this enzyme would lead to more volatile S-adenosylmethionine-mediated transmethylation in response to 1C substrate (e.g., methionine) or cofactor provision. We tested the sensitivity of bovine GCs to reduced methionine (from 50 to 10 µM) and observed a diminished flux of 1C units through the methionine cycle. We then used reduced-representation bisulfite sequencing to demonstrate that this reduction in methionine during bovine embryo culture leads to genome-wide alterations to DNA methylation in >1600 genes, including a cohort of imprinted genes linked to an abnormal fetal-overgrowth phenotype. Bovine ovarian and embryonic cells are acutely sensitive to methionine, but further experimentation is required to determine the significance of interspecific variation in BHMT expression.


Assuntos
Blastocisto/metabolismo , Carbono/metabolismo , Metilação de DNA , Epigênese Genética , Células da Granulosa/metabolismo , Oócitos/metabolismo , Células Tecais/metabolismo , Animais , Bovinos , Feminino , Células Hep G2 , Humanos , Ratos , Suínos
5.
Annu Rev Neurosci ; 35: 111-31, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22715880

RESUMO

Proteomic studies of the composition of mammalian synapses have revealed a high degree of complexity. The postsynaptic and presynaptic terminals are molecular systems with highly organized protein networks producing emergent physiological and behavioral properties. The major classes of synapse proteins and their respective functions in intercellular communication and adaptive responses evolved in prokaryotes and eukaryotes prior to the origins of neurons in metazoa. In eukaryotes, the organization of individual proteins into multiprotein complexes comprising scaffold proteins, receptors, and signaling enzymes formed the precursor to the core adaptive machinery of the metazoan postsynaptic terminal. Multiplicative increases in the complexity of this protosynapse machinery secondary to genome duplications drove synaptic, neuronal, and behavioral novelty in vertebrates. Natural selection has constrained diversification in mammalian postsynaptic mechanisms and the repertoire of adaptive and innate behaviors. The evolution and organization of synapse proteomes underlie the origins and complexity of nervous systems and behavior.


Assuntos
Evolução Biológica , Proteínas do Citoesqueleto/metabolismo , Evolução Molecular , Proteínas do Tecido Nervoso/metabolismo , Sinapses/metabolismo , Animais , Células Eucarióticas/metabolismo , Humanos , Modelos Neurológicos , Células Procarióticas/metabolismo , Proteoma/genética , Proteoma/metabolismo
6.
Am J Respir Crit Care Med ; 198(6): 739-750, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29547002

RESUMO

RATIONALE: Previous studies have identified defects in bacterial phagocytosis by alveolar macrophages (AMs) in patients with chronic obstructive pulmonary disease (COPD), but the mechanisms and clinical consequences remain incompletely defined. OBJECTIVES: To examine the effect of COPD on AM phagocytic responses and identify the mechanisms, clinical consequences, and potential for therapeutic manipulation of these defects. METHODS: We isolated AMs and monocyte-derived macrophages (MDMs) from a cohort of patients with COPD and control subjects within the Medical Research Council COPDMAP consortium and measured phagocytosis of bacteria in relation to opsonic conditions and clinical features. MEASUREMENTS AND MAIN RESULTS: COPD AMs and MDMs have impaired phagocytosis of Streptococcus pneumoniae. COPD AMs have a selective defect in uptake of opsonized bacteria, despite the presence of antipneumococcal antibodies in BAL, not observed in MDMs or healthy donor AMs. AM defects in phagocytosis in COPD are significantly associated with exacerbation frequency, isolation of pathogenic bacteria, and health-related quality-of-life scores. Bacterial binding and initial intracellular killing of opsonized bacteria in COPD AMs was not reduced. COPD AMs have reduced transcriptional responses to opsonized bacteria, such as cellular stress responses that include transcriptional modules involving antioxidant defenses and Nrf2 (nuclear factor erythroid 2-related factor 2)-regulated genes. Agonists of the cytoprotective transcription factor Nrf2 (sulforaphane and compound 7) reverse defects in phagocytosis of S. pneumoniae and nontypeable Haemophilus influenzae by COPD AMs. CONCLUSIONS: Patients with COPD have clinically relevant defects in opsonic phagocytosis by AMs, associated with impaired transcriptional responses to cellular stress, which are reversed by therapeutic targeting with Nrf2 agonists.


Assuntos
Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fagocitose/efeitos dos fármacos , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Isotiocianatos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/fisiologia , Masculino , Pessoa de Meia-Idade , Fagocitose/fisiologia , Streptococcus pneumoniae , Sulfóxidos
7.
Mol Cell Neurosci ; 86: 30-40, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29128319

RESUMO

Corticosteroids (CSs) are widely used clinically, for example in pediatric respiratory distress syndrome, and immunosuppression to prevent rejection of stem cell transplant populations in neural cell therapy. However, such treatment can be associated with adverse effects such as impaired neurogenesis and myelination, and increased risk of cerebral palsy. There is increasing evidence that CSs can adversely influence key biological properties of neural stem cells (NSCs) but the molecular mechanisms underpinning such effects are largely unknown. This is an important issue to address given the key roles NSCs play during brain development and as transplant cells for regenerative neurology. Here, we describe the use of label-free quantitative proteomics in conjunction with histological analyses to study CS effects on NSCs at the cellular and molecular levels, following treatment with methylprednisolone (MPRED). Immunocytochemical staining showed that both parent NSCs and newly generated daughter cells expressed the glucocorticoid receptor, with nuclear localisation of the receptor induced by MPRED treatment. MPRED markedly decreased NSC proliferation and neuronal differentiation while accelerating the maturation of oligodendrocytes, without concomitant effects on cell viability and apoptosis. Parallel proteomic analysis revealed that MPRED induced downregulation of growth associated protein 43 and matrix metallopeptidase 16 with upregulation of the cytochrome P450 family 51 subfamily A member 1. Our findings support the hypothesis that some neurological deficits associated with CS use may be mediated via effects on NSCs, and highlight putative target mechanisms underpinning such effects.


Assuntos
Corticosteroides/farmacologia , Metilprednisolona/farmacologia , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Proteômica/métodos , Animais , Animais Recém-Nascidos , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Relação Dose-Resposta a Droga , Glucocorticoides/farmacologia , Humanos , Camundongos , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia
8.
PLoS Pathog ; 12(11): e1005991, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27806135

RESUMO

The trematode Fasciola hepatica is responsible for chronic zoonotic infection globally. Despite causing a potent T-helper 2 response, it is believed that potent immunomodulation is responsible for rendering this host reactive non-protective host response thereby allowing the parasite to remain long-lived. We have previously identified a growth factor, FhTLM, belonging to the TGF superfamily can have developmental effects on the parasite. Herein we demonstrate that FhTLM can exert influence over host immune functions in a host receptor specific fashion. FhTLM can bind to receptor members of the Transforming Growth Factor (TGF) superfamily, with a greater affinity for TGF-ß RII. Upon ligation FhTLM initiates the Smad2/3 pathway resulting in phenotypic changes in both fibroblasts and macrophages. The formation of fibroblast CFUs is reduced when cells are cultured with FhTLM, as a result of TGF-ß RI kinase activity. In parallel the wound closure response of fibroblasts is also delayed in the presence of FhTLM. When stimulated with FhTLM blood monocyte derived macrophages adopt an alternative or regulatory phenotype. They express high levels interleukin (IL)-10 and arginase-1 while displaying low levels of IL-12 and nitric oxide. Moreover they also undergo significant upregulation of the inhibitory receptor PD-L1 and the mannose receptor. Use of RNAi demonstrates that this effect is dependent on TGF-ß RII and mRNA knock-down leads to a loss of IL-10 and PD-L1. Finally, we demonstrate that FhTLM aids newly excysted juveniles (NEJs) in their evasion of antibody-dependent cell cytotoxicity (ADCC) by reducing the NO response of macrophages-again dependent on TGF-ß RI kinase. FhTLM displays restricted expression to the F. hepatica gut resident NEJ stages. The altered fibroblast responses would suggest a role for dampened tissue repair responses in facilitating parasite migration. Furthermore, the adoption of a regulatory macrophage phenotype would allow for a reduced effector response targeting juvenile parasites which we demonstrate extends to an abrogation of the ADCC response. Thus suggesting that FhTLM is a stage specific evasion molecule that utilises host cytokine receptors. These findings are the first to clearly demonstrate the interaction of a helminth cytokine with a host receptor complex resulting in immune modifications that facilitate the non-protective chronic immune response which is characteristic of F. hepatica infection.


Assuntos
Fasciolíase/imunologia , Interações Hospedeiro-Parasita/imunologia , Receptores de Citocinas/imunologia , Transdução de Sinais/imunologia , Fatores de Crescimento Transformadores/imunologia , Células 3T3 , Animais , Citotoxicidade Celular Dependente de Anticorpos , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Fasciola hepatica , Fibroblastos/imunologia , Fibroblastos/parasitologia , Imunofluorescência , Macrófagos/imunologia , Macrófagos/parasitologia , Camundongos , Reação em Cadeia da Polimerase
9.
Hum Mol Genet ; 23(13): 3362-74, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24518672

RESUMO

Primary ciliary dyskinesia (PCD) is an inherited chronic respiratory obstructive disease with randomized body laterality and infertility, resulting from cilia and sperm dysmotility. PCD is characterized by clinical variability and extensive genetic heterogeneity, associated with different cilia ultrastructural defects and mutations identified in >20 genes. Next generation sequencing (NGS) technologies therefore present a promising approach for genetic diagnosis which is not yet in routine use. We developed a targeted panel-based NGS pipeline to identify mutations by sequencing of selected candidate genes in 70 genetically undefined PCD patients. This detected loss-of-function RSPH1 mutations in four individuals with isolated central pair (CP) agenesis and normal body laterality, from two unrelated families. Ultrastructural analysis in RSPH1-mutated cilia revealed transposition of peripheral outer microtubules into the 'empty' CP space, accompanied by a distinctive intermittent loss of the central pair microtubules. We find that mutations in RSPH1, RSPH4A and RSPH9, which all encode homologs of components of the 'head' structure of ciliary radial spoke complexes identified in Chlamydomonas, cause clinical phenotypes that appear to be indistinguishable except at the gene level. By high-resolution immunofluorescence we identified a loss of RSPH4A and RSPH9 along with RSPH1 from RSPH1-mutated cilia, suggesting RSPH1 mutations may result in loss of the entire spoke head structure. CP loss is seen in up to 28% of PCD cases, in whom laterality determination specified by CP-less embryonic node cilia remains undisturbed. We propose this defect could arise from instability or agenesis of the ciliary central microtubules due to loss of their normal radial spoke head tethering.


Assuntos
Proteínas de Ligação a DNA/genética , Síndrome de Kartagener/genética , Axonema/metabolismo , Axonema/fisiologia , Proteínas do Citoesqueleto/genética , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Síndrome de Kartagener/fisiopatologia , Microscopia Eletrônica , Microscopia de Fluorescência , Mutação , Proteínas/genética
10.
Am J Hum Genet ; 92(1): 88-98, 2013 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-23261303

RESUMO

Defects in motile cilia and sperm flagella cause primary ciliary dyskinesia (PCD), characterized by chronic airway disease, infertility, and left-right laterality disturbances, usually as a result of loss of the outer dynein arms (ODAs) that power cilia/flagella beating. Here, we identify loss-of-function mutations in CCDC114 causing PCD with laterality malformations involving complex heart defects. CCDC114 is homologous to DCC2, an ODA microtubule-docking complex component of the biflagellate alga Chlamydomonas. We show that CCDC114 localizes along the entire length of human cilia and that its deficiency causes a complete absence of ciliary ODAs, resulting in immotile cilia. Thus, CCDC114 is an essential ciliary protein required for microtubular attachment of ODAs in the axoneme. Fertility is apparently not greatly affected by CCDC114 deficiency, and qPCR shows that this may explained by low transcript expression in testis compared to ciliated respiratory epithelium. One CCDC114 mutation, c.742G>A, dating back to at least the 1400s, presents an important diagnostic and therapeutic target in the isolated Dutch Volendam population.


Assuntos
Axonema/genética , Síndrome de Kartagener/genética , Proteínas Associadas aos Microtúbulos/genética , Mutação , Sítios de Splice de RNA , Sequência de Bases , Dineínas , Feminino , Humanos , Masculino , Dados de Sequência Molecular , Linhagem
11.
Am J Hum Genet ; 93(2): 346-56, 2013 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-23891471

RESUMO

Primary ciliary dyskinesia (PCD) is a ciliopathy characterized by airway disease, infertility, and laterality defects, often caused by dual loss of the inner dynein arms (IDAs) and outer dynein arms (ODAs), which power cilia and flagella beating. Using whole-exome and candidate-gene Sanger resequencing in PCD-affected families afflicted with combined IDA and ODA defects, we found that 6/38 (16%) carried biallelic mutations in the conserved zinc-finger gene BLU (ZMYND10). ZMYND10 mutations conferred dynein-arm loss seen at the ultrastructural and immunofluorescence level and complete cilia immotility, except in hypomorphic p.Val16Gly (c.47T>G) homozygote individuals, whose cilia retained a stiff and slowed beat. In mice, Zmynd10 mRNA is restricted to regions containing motile cilia. In a Drosophila model of PCD, Zmynd10 is exclusively expressed in cells with motile cilia: chordotonal sensory neurons and sperm. In these cells, P-element-mediated gene silencing caused IDA and ODA defects, proprioception deficits, and sterility due to immotile sperm. Drosophila Zmynd10 with an equivalent c.47T>G (p.Val16Gly) missense change rescued mutant male sterility less than the wild-type did. Tagged Drosophila ZMYND10 is localized primarily to the cytoplasm, and human ZMYND10 interacts with LRRC6, another cytoplasmically localized protein altered in PCD. Using a fly model of PCD, we conclude that ZMYND10 is a cytoplasmic protein required for IDA and ODA assembly and that its variants cause ciliary dysmotility and PCD with laterality defects.


Assuntos
Cílios/genética , Dineínas/genética , Infertilidade Masculina/genética , Síndrome de Kartagener/genética , Proteínas/genética , Sistema Respiratório/metabolismo , Proteínas Supressoras de Tumor/genética , Animais , Axonema/genética , Axonema/metabolismo , Axonema/patologia , Cílios/metabolismo , Cílios/patologia , Proteínas do Citoesqueleto , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Dineínas/metabolismo , Exoma , Feminino , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Infertilidade Masculina/metabolismo , Infertilidade Masculina/patologia , Síndrome de Kartagener/metabolismo , Síndrome de Kartagener/patologia , Masculino , Camundongos , Mutação , Linhagem , Estrutura Terciária de Proteína , Proteínas/metabolismo , Sistema Respiratório/patologia , Proteínas Supressoras de Tumor/metabolismo
12.
Am J Hum Genet ; 93(5): 932-44, 2013 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-24183451

RESUMO

Bidirectional (anterograde and retrograde) motor-based intraflagellar transport (IFT) governs cargo transport and delivery processes that are essential for primary cilia growth and maintenance and for hedgehog signaling functions. The IFT dynein-2 motor complex that regulates ciliary retrograde protein transport contains a heavy chain dynein ATPase/motor subunit, DYNC2H1, along with other less well functionally defined subunits. Deficiency of IFT proteins, including DYNC2H1, underlies a spectrum of skeletal ciliopathies. Here, by using exome sequencing and a targeted next-generation sequencing panel, we identified a total of 11 mutations in WDR34 in 9 families with the clinical diagnosis of Jeune syndrome (asphyxiating thoracic dystrophy). WDR34 encodes a WD40 repeat-containing protein orthologous to Chlamydomonas FAP133, a dynein intermediate chain associated with the retrograde intraflagellar transport motor. Three-dimensional protein modeling suggests that the identified mutations all affect residues critical for WDR34 protein-protein interactions. We find that WDR34 concentrates around the centrioles and basal bodies in mammalian cells, also showing axonemal staining. WDR34 coimmunoprecipitates with the dynein-1 light chain DYNLL1 in vitro, and mining of proteomics data suggests that WDR34 could represent a previously unrecognized link between the cytoplasmic dynein-1 and IFT dynein-2 motors. Together, these data show that WDR34 is critical for ciliary functions essential to normal development and survival, most probably as a previously unrecognized component of the mammalian dynein-IFT machinery.


Assuntos
Proteínas de Transporte/genética , Dineínas do Citoplasma/genética , Síndrome de Ellis-Van Creveld/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Animais , Povo Asiático/genética , Axonema/genética , Criança , Chlamydomonas/genética , Cílios/genética , Cílios/metabolismo , Citoesqueleto/genética , Citoesqueleto/metabolismo , Síndrome de Ellis-Van Creveld/patologia , Exoma , Éxons , Humanos , Lactente , Recém-Nascido , Mutação , Conformação Proteica , Proteômica , População Branca/genética
13.
BMC Genomics ; 16: 334, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25898893

RESUMO

BACKGROUND: Streptococcus uberis, a Gram-positive, catalase-negative member of the family Streptococcaceae is an important environmental pathogen responsible for a significant proportion of subclinical and clinical bovine intramammary infections. Currently, the genome of only a single reference strain (0140J) has been described. Here we present a comparative analysis of complete draft genome sequences of an additional twelve S. uberis strains. RESULTS: Pan and core genome analysis revealed the core genome common to all strains to be 1,550 genes in 1,509 orthologous clusters, complemented by 115-246 accessory genes present in one or more S. uberis strains but absent in the reference strain 0140J. Most of the previously predicted virulent genes were present in the core genome of all 13 strains but gene gain/loss was observed between the isolates in CDS associated with clustered regularly interspaced short palindromic repeats (CRISPRs), prophage and bacteriocin production. Experimental challenge experiments confirmed strain EF20 as non-virulent; only able to infect in a transient manner that did not result in clinical mastitis. Comparison of the genome sequence of EF20 with the validated virulent strain 0140J identified genes associated with virulence, however these did not relate clearly with clinical/non-clinical status of infection. CONCLUSION: The gain/loss of mobile genetic elements such as CRISPRs and prophage are a potential driving force for evolutionary change. This first "whole-genome" comparison of strains isolated from clinical vs non-clinical intramammary infections including the type virulent vs non-virulent strains did not identify simple gene gain/loss rules that readily explain, or be confidently associated with, differences in virulence. This suggests that a more complex dynamic determines infection potential and clinical outcome not simply gene content.


Assuntos
Genoma Bacteriano , Streptococcus/genética , Virulência/genética , Animais , Bacteriocinas/metabolismo , Sequência de Bases , Bovinos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Hibridização Genômica Comparativa , Feminino , Mastite Bovina/genética , Mastite Bovina/microbiologia , Mastite Bovina/patologia , Leite/microbiologia , Dados de Sequência Molecular , Filogenia , Polimorfismo de Nucleotídeo Único , Alinhamento de Sequência , Análise de Sequência de DNA , Streptococcus/classificação , Streptococcus/patogenicidade
14.
BMC Genomics ; 16: 331, 2015 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-25896062

RESUMO

BACKGROUND: Filarial nematodes are important pathogens in the tropics transmitted to humans via the bite of blood sucking arthropod vectors. The molecular mechanisms underpinning survival and differentiation of these parasites following transmission are poorly understood. microRNAs are small non-coding RNA molecules that regulate target mRNAs and we set out to investigate whether they play a role in the infection event. RESULTS: microRNAs differentially expressed during the early post-infective stages of Brugia pahangi L3 were identified by microarray analysis. One of these, bpa-miR-5364, was selected for further study as it is upregulated ~12-fold at 24 hours post-infection, is specific to clade III nematodes, and is a novel member of the let-7 family, which are known to have key developmental functions in the free-living nematode Caenorhabditis elegans. Predicted mRNA targets of bpa-miR-5364 were identified using bioinformatics and comparative genomics approaches that relied on the conservation of miR-5364 binding sites in the orthologous mRNAs of other filarial nematodes. Finally, we confirmed the interaction between bpa-miR-5364 and three of its predicted targets using a dual luciferase assay. CONCLUSIONS: These data provide new insight into the molecular mechanisms underpinning the transmission of third stage larvae of filarial nematodes from vector to mammal. This study is the first to identify parasitic nematode mRNAs that are verified targets of specific microRNAs and demonstrates that post-transcriptional control of gene expression via stage-specific expression of microRNAs may be important in the success of filarial infection.


Assuntos
Brugia pahangi/genética , MicroRNAs/metabolismo , Regiões 3' não Traduzidas , Animais , Sequência de Bases , Brugia pahangi/classificação , Brugia pahangi/crescimento & desenvolvimento , Biologia Computacional , Feminino , Estágios do Ciclo de Vida/genética , Masculino , MicroRNAs/antagonistas & inibidores , Análise de Sequência com Séries de Oligonucleotídeos , Oligonucleotídeos Antissenso/metabolismo , Filogenia , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Análise de Sequência de RNA , Transcriptoma
15.
J Virol ; 88(21): 12464-71, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25142585

RESUMO

UNLABELLED: Several types of cancer in fish are caused by retroviruses, including those responsible for major outbreaks of disease, such as walleye dermal sarcoma virus and salmon swim bladder sarcoma virus. These viruses form a phylogenetic group often described as the epsilonretrovirus genus. Epsilon-like retroviruses have become endogenous retroviruses (ERVs) on several occasions, integrating into germ line cells to become part of the host genome, and sections of fish and amphibian genomes are derived from epsilon-like retroviruses. However, epsilon-like ERVs have been identified in very few mammals. We have developed a pipeline to screen full genomes for ERVs, and using this pipeline, we have located over 800 endogenous epsilon-like ERV fragments in primate genomes. Genomes from 32 species of mammals and birds were screened, and epsilon-like ERV fragments were found in all primate and tree shrew genomes but no others. These viruses appear to have entered the genome of a common ancestor of Old and New World monkeys between 42 million and 65 million years ago. Based on these results, there is an ancient evolutionary relationship between epsilon-like retroviruses and primates. Clearly, these viruses had the potential to infect the ancestors of primates and were at some point a common pathogen in these hosts. Therefore, this result raises questions about the potential of epsilonretroviruses to infect humans and other primates and about the evolutionary history of these retroviruses. IMPORTANCE: Epsilonretroviruses are a group of retroviruses that cause several important diseases in fish. Retroviruses have the ability to become a permanent part of the DNA of their host by entering the germ line as endogenous retroviruses (ERVs), where they lose their infectivity over time but can be recognized as retroviruses for millions of years. Very few mammals are known to have epsilon-like ERVs; however, we have identified over 800 fragments of endogenous epsilon-like ERVs in the genomes of all major groups of primates, including humans. These viruses seem to have circulated and infected primate ancestors 42 to 65 million years ago. We are now interested in how these viruses have evolved and whether they have the potential to infect modern humans or other primates.


Assuntos
Retrovirus Endógenos/classificação , Retrovirus Endógenos/isolamento & purificação , Primatas/virologia , Animais , Aves , Retrovirus Endógenos/genética , Testes Genéticos , Humanos , Tupaiidae
16.
Vet Res ; 46: 29, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25879787

RESUMO

The helminth Fasciola hepatica causes fasciolosis throughout the world, a major disease of livestock and an emerging zoonotic disease in humans. Sustainable control mechanisms such as vaccination are urgently required. To discover potential vaccine targets we undertook a genome screen to identify members of the transforming growth factor (TGF) family of proteins. Herein we describe the discovery of three ligands belonging to this superfamily and the cloning and characterisation of an activin/TGF like molecule we term FhTLM. FhTLM has a limited expression pattern both temporally across the parasite stages but also spatially within the worm. Furthermore, a recombinant form of this protein is able to enhance the rate (or magnitude) of multiple developmental processes of the parasite indicating a conserved role for this protein superfamily in the developmental biology of a major trematode parasite. Our study demonstrates for the first time the existence of this protein superfamily within F. hepatica and assigns a function to one of the three identified ligands. Moreover further exploration of this superfamily may yield future targets for diagnostic or vaccination purposes due to its stage restricted expression and functional role.


Assuntos
Fasciola hepatica/genética , Fasciolíase/prevenção & controle , Proteínas de Helminto/genética , Proteoma/genética , Fator de Crescimento Transformador beta/genética , Animais , Fasciola hepatica/imunologia , Fasciola hepatica/metabolismo , Fasciolíase/parasitologia , Proteínas de Helminto/metabolismo , Ligantes , Filogenia , Proteoma/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Vacinas/genética , Vacinas/imunologia
17.
Pituitary ; 18(5): 674-84, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25557289

RESUMO

INTRODUCTION: Transgenic mice overexpressing the high mobility group A (HMGA) genes, Hmga1 or Hmga2 develop pituitary tumours and their overexpression is also a frequent finding in human pituitary adenomas. In some cases, increased expression of HMGA2 but not that of HMGA1 is consequent to genetic perturbations. However, recent studies show that down-regulation of microRNA (miRNA), that contemporaneously target the HMGA1 and HMGA2 transcripts, are associated with their overexpression. RESULTS: In a cohort of primary pituitary adenoma we determine the impact of epigenetic modifications on the expression of HMGA-targeting miRNA. For these miRNAs, chromatin immunoprecipitations showed that transcript down-regulation is correlated with histone tail modifications associated with condensed silenced genes. The functional impact of epigenetic modification on miRNA expression was determined in the rodent pituitary cell line, GH3. In these cells, histone tail, miRNA-associated, modifications were similar to those apparent in human adenoma and likely account for their repression. Indeed, challenge of GH3 cells with the epidrugs, zebularine and TSA, led to enrichment of the histone modification, H3K9Ac, associated with active genes, and depletion of the modification, H3K27me3, associated with silent genes and re-expression of HMGA-targeting miRNA. Moreover, epidrugs challenges were also associated with a concomitant decrease in hmga1 transcript and protein levels and concurrent increase in bmp-4 expression. CONCLUSIONS: These findings show that the inverse relationship between HMGA expression and targeting miRNA is reversible through epidrug interventions. In addition to showing a mechanistic link between epigenetic modifications and miRNA expression these findings underscore their potential as therapeutic targets in this and other diseases.


Assuntos
Adenoma/tratamento farmacológico , Antineoplásicos/farmacologia , Epigênese Genética/efeitos dos fármacos , Proteínas HMGA/metabolismo , Inibidores de Histona Desacetilases/farmacologia , MicroRNAs/metabolismo , Hipófise/efeitos dos fármacos , Neoplasias Hipofisárias/tratamento farmacológico , Adenoma/genética , Adenoma/metabolismo , Adenoma/patologia , Animais , Linhagem Celular , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Ilhas de CpG , Citidina/análogos & derivados , Citidina/farmacologia , Metilação de DNA/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Proteínas HMGA/genética , Proteína HMGA2/genética , Proteína HMGA2/metabolismo , Humanos , Ácidos Hidroxâmicos/farmacologia , MicroRNAs/genética , Hipófise/metabolismo , Hipófise/patologia , Neoplasias Hipofisárias/genética , Neoplasias Hipofisárias/metabolismo , Neoplasias Hipofisárias/patologia , Ratos , Ratos Sprague-Dawley , Regulação para Cima
18.
J Med Genet ; 51(1): 61-7, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24203976

RESUMO

BACKGROUND: Primary ciliary dyskinesia (PCD) is a rare, genetically heterogeneous ciliopathy disorder affecting cilia and sperm motility. A range of ultrastructural defects of the axoneme underlie the disease, which is characterised by chronic respiratory symptoms and obstructive lung disease, infertility and body axis laterality defects. We applied a next-generation sequencing approach to identify the gene responsible for this phenotype in two consanguineous families. METHODS AND RESULTS: Data from whole-exome sequencing in a consanguineous Turkish family, and whole-genome sequencing in the obligate carrier parents of a consanguineous Pakistani family was combined to identify homozygous loss-of-function mutations in ARMC4, segregating in all five affected individuals from both families. Both families carried nonsense mutations within the highly conserved armadillo repeat region of ARMC4: c.2675C>A; pSer892* and c.1972G>T; p.Glu658*. A deficiency of ARMC4 protein was seen in patient's respiratory cilia accompanied by loss of the distal outer dynein arm motors responsible for generating ciliary beating, giving rise to cilia immotility. ARMC4 gene expression is upregulated during ciliogenesis, and we found a predicted interaction with the outer dynein arm protein DNAI2, mutations in which also cause PCD. CONCLUSIONS: We report the first use of whole-genome sequencing to identify gene mutations causing PCD. Loss-of-function mutations in ARMC4 cause PCD with situs inversus and cilia immotility, associated with a loss of the distal outer (but not inner) dynein arms. This addition of ARMC4 to the list of genes associated with ciliary outer dynein arm defects expands our understanding of the complexities of PCD genetics.


Assuntos
Proteínas do Domínio Armadillo/genética , Dineínas/genética , Estudo de Associação Genômica Ampla , Síndrome de Kartagener/genética , Síndrome de Kartagener/metabolismo , Mutação , Proteínas do Domínio Armadillo/química , Proteínas do Domínio Armadillo/metabolismo , Cílios/genética , Cílios/metabolismo , Cílios/ultraestrutura , Dineínas/química , Dineínas/metabolismo , Exoma , Feminino , Genoma Humano , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Modelos Moleculares , Linhagem , Fenótipo , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas
19.
Biochim Biophys Acta ; 1832(11): 1831-41, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23274885

RESUMO

The neuronal ceroid lipofuscinoses (NCLs) are a group of rare genetic diseases characterised clinically by the progressive deterioration of mental, motor and visual functions and histopathologically by the intracellular accumulation of autofluorescent lipopigment - ceroid - in affected tissues. The NCLs are clinically and genetically heterogeneous and more than 14 genetically distinct NCL subtypes have been described to date (CLN1-CLN14) (Haltia and Goebel, 2012 [1]). In this review we will chronologically summarise work which has led over the years to identification of NCL genes, and outline the potential of novel genomic techniques and related bioinformatic approaches for further genetic dissection and diagnosis of NCLs. This article is part of a Special Issue entitled: The Neuronal Ceroid Lipofuscinoses or Batten Disease.


Assuntos
Biologia Computacional , Predisposição Genética para Doença , Proteínas de Membrana/genética , Mutação/genética , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/patologia , Humanos , Lipofuscinoses Ceroides Neuronais/terapia , Fenótipo
20.
BMC Genomics ; 15: 848, 2014 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-25281558

RESUMO

BACKGROUND: Homopolymeric tracts, particularly poly dA.dT, are enriched within the intergenic sequences of eukaryotic genomes where they appear to act as intrinsic regulators of nucleosome positioning. A previous study of the incomplete genome of the human malarial parasite Plasmodium falciparum reports a higher than expected enrichment of poly dA.dT tracts, far above that anticipated even in this highly AT rich genome. Here we report an analysis of the relative frequency, length and spatial arrangement of homopolymer tracts for the complete P. falciparum genome, extending this analysis to twelve additional genomes of Apicomplexan parasites important to human and animal health. In addition, using nucleosome-positioning data available for P. falciparum, we explore the correlation of poly dA.dT tracts with nucleosome-positioning data over key expression landmarks within intergenic regions. RESULTS: We describe three apparent lineage-specific patterns of homopolymeric tract organization within the intergenic regions of these Apicomplexan parasites. Moreover, a striking pattern of enrichment of overly long poly dA.dT tracts in the intergenic regions of Plasmodium spp. uniquely extends into protein coding sequences. There is a conserved spatial arrangement of poly dA.dT immediately flanking open reading frames and over predicted core promoter sites. These key landmarks are all relatively depleted in nucleosomes in P. falciparum, as would be expected for poly dA.dT acting as nucleosome exclusion sequences. CONCLUSIONS: Previous comparative studies of homopolymer tract organization emphasize evolutionary diversity; this is the first report of such an analysis within a single phylum. Our data provide insights into the evolution of homopolymeric tracts and the selective pressures at play in their maintenance and expansion.


Assuntos
Malária/parasitologia , Plasmodium falciparum/genética , DNA Intergênico/genética , DNA Intergênico/metabolismo , Expressão Gênica , Genoma de Protozoário , Humanos , Malária/patologia , Nucleossomos/metabolismo , Fases de Leitura Aberta/genética , Plasmodium falciparum/metabolismo , Poli dA-dT/química , Poli dA-dT/metabolismo , Regiões não Traduzidas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA