Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Langmuir ; 40(5): 2632-2645, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38252152

RESUMO

Four FeIII complexes of typical artificial siderophore ligands containing catecholate and/or hydroxamate groups of tricatecholate, biscatecholate-monohydroxamate, monocatecholate-bishydroxamate, and trihydroxamate type artificial siderophores (K3[FeIIILC3], K2[FeIIILC2H1], K[FeIIILC1H2], and [FeIIILH3]) were modified on Au substrate surfaces. Their abilities to adsorb microorganisms were investigated using scanning electron microscopy, quartz crystal microbalance, and AC impedance methods. The artificial siderophore-iron complexes modified on Au substrates (FeLC3/Au, FeLC2H1/Au, FeLC1H2/Au, and FeLH3/Au) showed the selective immobilization behavior for various microorganisms, depending on the structural features of the artificial siderophores (the number of catecholate and hydroxamate arms). Their specificities corresponded well with the structural characteristics of natural siderophores released by microorganisms and used for FeIII ion uptake. These findings suggest that they were generated via specific interactions between the artificial siderophore-FeIII complexes and the receptors on microorganism surfaces. Our observations revealed that the FeL/Au systems may be potentially used as effective microbe-capturing probes that can enable rapid and simple detection and identification of various microorganisms.


Assuntos
Compostos Férricos , Sideróforos , Sideróforos/química , Compostos Férricos/química , Ferro , Ácidos Hidroxâmicos , Transporte Biológico
2.
Inorg Chem ; 62(40): 16362-16377, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37738382

RESUMO

Two hybrid-type artificial siderophore ligands containing both catecholate and hydroxamate groups as iron-capturing sites, bis(2,3-dihydroxybenzamidepropyl)mono[2-propyl]aminomethane (H5LC2H1) and mono(2,3-dihydroxybenzamide-propyl)bis[2-propyl]aminomethane (H4LC1H2), were designed and synthesized. Iron(III) complexes, K2[FeIIILC2H1] and K[FeIIILC1H2], were prepared and characterized spectroscopically, potentiometrically, and electrochemically. The results were compared with those previously reported for iron complexes with non-hybridized siderophores containing either catecholate or hydroxamate groups, K3[FeIIILC3] and [FeIIILH3]. Both K2[FeIIILC2H1] and K[FeIIILC1H2] formed six-coordinate octahedral iron(III) complexes. Evaluation of the thermodynamic properties of the complexes in an aqueous solution indicated high log ß values of 37.3 and 32.3 for K2[FeIIILC2H1] and K[FeIIILC1H2], respectively, which were intermediate between those of K3[FeIIILC3] (44.2) and [FeIIILH3] (31). Evaluation of the ultraviolet-visible and Fourier transform infrared spectra of the two hybrid siderophore-iron complexes under different pH or pD (potential of dueterium) conditions showed that the protonation of K2[FeIIILC2H1] and K[FeIIILC1H2] generated the corresponding protonated species, [FeIIIHnLC2H1](2-n)- and [FeIIIHnLC1H2](1-n)-, accompanied by a significant change in the coordination mode. The protonated hybrid-type siderophore-iron complexes showed high reduction potentials, which were well within the range of those of biological reductants. The results suggest that the hybrid-type siderophore easily releases an iron(III) ion at low pH. The biological activity of the four artificial siderophore-iron complexes against Microbacterium flavescens and Escherichia coli clearly depends on the structural differences between the complexes. This finding demonstrates that the changes in the coordination sites of the siderophores enable close control of the interactions between the siderophores and receptors in the cell membrane.

3.
Phys Rev Lett ; 129(2): 020502, 2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35867434

RESUMO

One of the major challenges for erroneous quantum computers is undoubtedly the control over the effect of noise. Considering the rapid growth of available quantum resources that are not fully fault tolerant, it is crucial to develop practical hardware-friendly quantum error mitigation (QEM) techniques to suppress unwanted errors. Here, we propose a novel generalized quantum subspace expansion method which can handle stochastic, coherent, and algorithmic errors in quantum computers. By fully exploiting the substantially extended subspace, we can efficiently mitigate the noise present in the spectra of a given Hamiltonian, without relying on any information of noise. The performance of our method is discussed under two highly practical setups: the quantum subspaces are mainly spanned by powers of the noisy state ρ^{m} and a set of error-boosted states, respectively. We numerically demonstrate in both situations that we can suppress errors by orders of magnitude, and show that our protocol inherits the advantages of previous error-agnostic QEM techniques as well as overcoming their drawbacks.

4.
Phys Rev Lett ; 129(12): 120505, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36179156

RESUMO

Approximation based on perturbation theory is the foundation for most of the quantitative predictions of quantum mechanics, whether in quantum many-body physics, chemistry, quantum field theory, or other domains. Quantum computing provides an alternative to the perturbation paradigm, yet state-of-the-art quantum processors with tens of noisy qubits are of limited practical utility. Here, we introduce perturbative quantum simulation, which combines the complementary strengths of the two approaches, enabling the solution of large practical quantum problems using limited noisy intermediate-scale quantum hardware. The use of a quantum processor eliminates the need to identify a solvable unperturbed Hamiltonian, while the introduction of perturbative coupling permits the quantum processor to simulate systems larger than the available number of physical qubits. We present an explicit perturbative expansion that mimics the Dyson series expansion and involves only local unitary operations, and show its optimality over other expansions under certain conditions. We numerically benchmark the method for interacting bosons, fermions, and quantum spins in different topologies, and study different physical phenomena, such as information propagation, charge-spin separation, and magnetism, on systems of up to 48 qubits only using an 8+1 qubit quantum hardware. We demonstrate our scheme on the IBM quantum cloud, verifying its noise robustness and illustrating its potential for benchmarking large quantum processors with smaller ones.

5.
Phys Rev Lett ; 129(25): 250503, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36608222

RESUMO

Quantum metrology with entangled resources aims to achieve sensitivity beyond the standard quantum limit by harnessing quantum effects even in the presence of environmental noise. So far, sensitivity has been mainly discussed from the viewpoint of reducing statistical errors under the assumption of perfect knowledge of a noise model. However, we cannot always obtain complete information about a noise model due to coherence time fluctuations, which are frequently observed in experiments. Such unknown fluctuating noise leads to systematic errors and nullifies the quantum advantages. Here, we propose an error-mitigated quantum metrology that can filter out unknown fluctuating noise with the aid of purification-based quantum error mitigation. We demonstrate that our protocol mitigates systematic errors and recovers superclassical scaling in a practical situation with time-inhomogeneous bias-inducing noise. Our result is the first demonstration to reveal the usefulness of purification-based error mitigation for unknown fluctuating noise, thus paving the way not only for practical quantum metrology but also for quantum computation affected by such noise.

6.
Phys Rev Lett ; 125(1): 010501, 2020 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-32678631

RESUMO

Variational quantum algorithms have been proposed to solve static and dynamic problems of closed many-body quantum systems. Here we investigate variational quantum simulation of three general types of tasks-generalized time evolution with a non-Hermitian Hamiltonian, linear algebra problems, and open quantum system dynamics. The algorithm for generalized time evolution provides a unified framework for variational quantum simulation. In particular, we show its application in solving linear systems of equations and matrix-vector multiplications by converting these algebraic problems into generalized time evolution. Meanwhile, assuming a tensor product structure of the matrices, we also propose another variational approach for these two tasks by combining variational real and imaginary time evolution. Finally, we introduce variational quantum simulation for open system dynamics. We variationally implement the stochastic Schrödinger equation, which consists of dissipative evolution and stochastic jump processes. We numerically test the algorithm with a 6-qubit 2D transverse field Ising model under dissipation.

7.
Yakugaku Zasshi ; 144(6): 643-650, 2024.
Artigo em Japonês | MEDLINE | ID: mdl-38825473

RESUMO

Inspired by the mechanism by which microorganisms utilize siderophores to ingest iron, four different FeIII complexes of typical artificial siderophore ligands containing catecholate and/or hydroxamate groups, K3[FeIII-LC3], K2[FeIII-LC2H1], K[FeIII-LC1H2], and [FeIII-LH3], were prepared. They were modified on an Au substrate surface (Fe-L/Au) and applied as microorganism immobilization devices for fast, sensitive, selective detection of microorganisms, where H6LC3, H5LC2H1, H4LC1H2, and H3LH3 denote the tri-catecholate, biscatecholate-monohydroxamate, monocatecholate-bishydroxamate, and tri-hydroxamate type of artificial siderophores, respectively. Their adsorption properties for the several microorganisms were investigated using scanning electron microscopy (SEM), quartz crystal microbalance (QCM), and electric impedance spectroscopy (EIS) methods. The artificial siderophore-iron complexes modified on the Au substrates Fe-LC3/Au, Fe-LC2H1/Au, Fe-LC1H2/Au, and Fe-LH3/Au showed specific microorganism immobilization behavior with selectivity based on the structure of the artificial siderophores. Their specificities corresponded well with the structural characteristics of natural siderophores that microorganisms release from the cell and/or use to take up an iron. These findings suggest that release and uptake are achieved through specific interactions between the artificial siderophore-FeIII complexes and receptors on the cell surfaces of microorganisms. This study revealed that Fe-L/Au systems have specific potential to serve as effective immobilization probes of microorganisms for rapid, selective detection and identification of a variety of microorganisms.


Assuntos
Sideróforos , Ouro , Ferro , Adsorção , Células Imobilizadas , Técnicas de Microbalança de Cristal de Quartzo , Microscopia Eletrônica de Varredura , Ligantes , Catecóis , Ácidos Hidroxâmicos
8.
Sci Bull (Beijing) ; 66(21): 2181-2188, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36654109

RESUMO

Quantum algorithms have been developed for efficiently solving linear algebra tasks. However, they generally require deep circuits and hence universal fault-tolerant quantum computers. In this work, we propose variational algorithms for linear algebra tasks that are compatible with noisy intermediate-scale quantum devices. We show that the solutions of linear systems of equations and matrix-vector multiplications can be translated as the ground states of the constructed Hamiltonians. Based on the variational quantum algorithms, we introduce Hamiltonian morphing together with an adaptive ansätz for efficiently finding the ground state, and show the solution verification. Our algorithms are especially suitable for linear algebra problems with sparse matrices, and have wide applications in machine learning and optimisation problems. The algorithm for matrix multiplications can be also used for Hamiltonian simulation and open system simulation. We evaluate the cost and effectiveness of our algorithm through numerical simulations for solving linear systems of equations. We implement the algorithm on the IBM quantum cloud device with a high solution fidelity of 99.95%.

9.
Sci Rep ; 10(1): 1751, 2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32019941

RESUMO

We explore the problem of projecting the ground-state of an ultra-strong-coupled circuit-QED system into a non-energy-eigenstate. As a measurement apparatus we consider a nonlinear driven resonator. We find that the post-measurement state of the nonlinear resonator exhibits a large correlation with the post-measurement state of the ultra-strongly coupled system even when the coupling between measurement device and system is much smaller than the energy scales of the system itself. While the projection is imperfect, we argue that because of the strong nonlinear response of the resonator it works in a practical regime where a linear measurement apparatus would fail.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA