Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Toxicol Mech Methods ; 33(9): 741-754, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37496379

RESUMO

Cellulose nanofibers (CNFs) are fibrous nanomaterials produced from plants. Since some nanomaterials are toxic, toxicity evaluation, including in vitro examinations using cultured cells, is essential for the effective use of CNFs. On the other hand, microorganisms in the environment can contaminate CNF suspensions. The contamination of CNF samples and the effects of contaminating microorganisms on in vitro examinations were investigated in this study. Microorganism contamination in CNF samples was examined, and microbial inactivation of CNF suspensions using gamma irradiation was evaluated. After gamma-ray irradiation at absorbed doses of 0.5, 1, 5, and 10 kGy, the cellular effects of CNF suspensions were examined using 6 types of cultured cell, HaCaT, A549, Caco-2, MeT-5A, THP-1, and NR8383 cells. CNF samples were contaminated with bacteria and CNF suspensions exhibited endotoxin activity. Gamma irradiation effectively inactivated the microorganisms contained in the CNF suspensions. When the absorbed dose was 10 kGy, the fiber length of CNF was shortened, but the effect on CNF was small at 1.0 kGy or less. CNF suspensions showed lipopolysaccharides (LPS)-like cellular responses and strongly induced interleukin-8, especially in macrophages. Absorbed doses of at least 10 kGy did not affect the LPS-like activity. In this study, it was shown that the CNF suspension may be contaminated with microorganisms. Gamma irradiation was effective for microbial inactivation of suspension for invitor toxicity evaluation of CNF. In vitro evaluation of CNFs requires attention to the effects of contaminants such as LPS.


Assuntos
Celulose , Nanofibras , Humanos , Celulose/toxicidade , Nanofibras/toxicidade , Células CACO-2 , Viabilidade Microbiana , Lipopolissacarídeos
2.
Toxicol Mech Methods ; 30(7): 477-489, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32345130

RESUMO

Multi-walled carbon nanotubes (MWCNTs) have industrial applications in the nanotechnology field. The physico-chemical properties of MWCNTs vary greatly depending on MWCNT manufacture and application. It has been pointed out that their needle shape and high durability are important factors that determine the biopersistence of fibers and can lead to inhalation toxicity or cytotoxicity. In this study, we prepared six suspensions of MWCNTs differing in diameter and length, and performed in vitro cell-based assays for 24 h using NR8383 rat alveolar macrophages. Rigid, needle-shaped MWCNTs with a large diameter (>50 µm) penetrated the cytoplasm and decreased cell survival without generating intracellular reactive oxygen species (ROS), significantly up-regulated many genes involved in inflammatory responses, response to oxidative stress and apoptosis, and extracellular matrix degradation. Bent MWCNTs with a small diameter (<20 µm) were phagocytosed in vacuole-like cellular compartments and decreased cell survival along with intracellular ROS generation. Straight, thin MWCNTs with a small diameter (<20 µm) caused a slight intracellular ROS generation but no decrease in cell viability. Some straight, long, and thin MWCNTs were found in the mitochondria and near the nuclei; however, no mutagenesis was observed. The in vitro cell-based assays showed high cytotoxicity of MWCNTs with a large diameter (>50 µm), moderate and low cytotoxicity of MWCNTs with a small diameter (<20 µm). These results suggested that the diameter of MWCNTs considerably contributes to their cytotoxicity.


Assuntos
Macrófagos Alveolares/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Fagocitose , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citocinas/genética , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/ultraestrutura , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Ratos , Espécies Reativas de Oxigênio/metabolismo , Transcriptoma
3.
Toxicol Ind Health ; 32(8): 1430-1437, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25552537

RESUMO

Crystalline silica (SiO2) is an important material for industry but is considered potentially carcinogenic. Inhalation of a crystalline SiO2 aerosol may contribute to serious lung diseases. Crystalline SiO2 particles are commonly used as a positive control in toxicity assays of particulate materials (e.g. nanoparticles). Crystalline SiO2 induces oxidative stress resulting in lipid peroxidation, but the acute oxidative stress response in the lung is not well understood. Lipid peroxidation during the acute stage of oxidative stress after instillation of crystalline SiO2 into rats was examined by bronchoalveolar lavage fluid (BALF) analysis. The levels of 8-iso-prostaglandin F2α and hydroxyoctadecadienoic acid (HODE) in the BALF were measured using liquid chromatography coupled to quadrupole mass spectrometry. The concentration of the antioxidant protein heme oxygenase-1 (HO-1) in the BALF was determined using enzyme-linked immunosorbent assay. Intratracheal instillation of crystalline SiO2 increased the level of HODE and HO-1 in BALF at 24 h after administration. The levels of HODE and HO-1 returned to baseline at 72 h after instillation. Lactate dehydrogenase leakage was observed only after 1 h instillation. These results suggest that the contribution of oxidative stress to the pulmonary toxicity of crystalline SiO2 is minimal in the early acute stage after exposure.


Assuntos
Modelos Animais de Doenças , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Material Particulado/toxicidade , Mucosa Respiratória/efeitos dos fármacos , Dióxido de Silício/toxicidade , Silicose/metabolismo , Poluentes Atmosféricos/toxicidade , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Líquido da Lavagem Broncoalveolar/química , Carcinógenos Ambientais/toxicidade , Dinoprosta/agonistas , Dinoprosta/análogos & derivados , Dinoprosta/metabolismo , Ácidos Graxos Insaturados/agonistas , Ácidos Graxos Insaturados/metabolismo , Heme Oxigenase-1/metabolismo , Instilação de Medicamentos , Cinética , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Tamanho da Partícula , Ratos Wistar , Mucosa Respiratória/metabolismo , Silicose/sangue , Silicose/enzimologia , Traqueia
4.
Inhal Toxicol ; 27(4): 207-23, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25865113

RESUMO

To elucidate the effect of size on the pulmonary toxicity of single-wall carbon nanotubes (SWCNTs), we prepared two types of dispersed SWCNTs, namely relatively thin bundles with short linear shapes (CNT-1) and thick bundles with long linear shapes (CNT-2), and conducted rat intratracheal instillation tests and in vitro cell-based assays using NR8383 rat alveolar macrophages. Total protein levels, MIP-1α expression, cell counts in BALF, and histopathological examinations revealed that CNT-1 caused pulmonary inflammation and slower recovery and that CNT-2 elicited acute lung inflammation shortly after their instillation. Comprehensive gene expression analysis confirmed that CNT-1-induced genes were strongly associated with inflammatory responses, cell proliferation, and immune system processes at 7 or 30 d post-instillation. Numerous genes were significantly upregulated or downregulated by CNT-2 at 1 d post-instillation. In vitro assays demonstrated that CNT-1 and CNT-2 SWCNTs were phagocytized by NR8383 cells. CNT-2 treatment induced cell growth inhibition, reactive oxygen species production, MIP-1α expression, and several genes involved in response to stimulus, whereas CNT-1 treatment did not exert a significant impact in these regards. These results suggest that SWCNTs formed as relatively thin bundles with short linear shapes elicited delayed pulmonary inflammation with slower recovery. In contrast, SWCNTs with a relatively thick bundle and long linear shapes sensitively induced cellular responses in alveolar macrophages and elicited acute lung inflammation shortly after inhalation. We conclude that the pulmonary toxicity of SWCNTs is closely associated with the size of the bundles. These physical parameters are useful for risk assessment and management of SWCNTs.


Assuntos
Nanotubos de Carbono/toxicidade , Administração por Inalação , Animais , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Contagem de Células , Linhagem Celular , Quimiocina CCL3/imunologia , Perfilação da Expressão Gênica , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Masculino , Ratos Wistar , Espécies Reativas de Oxigênio/imunologia
5.
Risk Anal ; 35(10): 1940-56, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25943334

RESUMO

This study assessed the health risks via inhalation and derived the occupational exposure limit (OEL) for the carbon nanotube (CNT) group rather than individual CNT material. We devised two methods: the integration of the intratracheal instillation (IT) data with the inhalation (IH) data, and the "biaxial approach." A four-week IH test and IT test were performed in rats exposed to representative materials to obtain the no observed adverse effect level, based on which the OEL was derived. We used the biaxial approach to conduct a relative toxicity assessment of six types of CNTs. An OEL of 0.03 mg/m(3) was selected as the criterion for the CNT group. We proposed that the OEL be limited to 15 years. We adopted adaptive management, in which the values are reviewed whenever new data are obtained. The toxicity level was found to be correlated with the Brunauer-Emmett-Teller (BET)-specific surface area (BET-SSA) of CNT, suggesting the BET-SSA to have potential for use in toxicity estimation. We used the published exposure data and measurement results of dustiness tests to compute the risk in relation to particle size at the workplace and showed that controlling micron-sized respirable particles was of utmost importance. Our genotoxicity studies indicated that CNT did not directly interact with genetic materials. They supported the concept that, even if CNT is genotoxic, it is secondary genotoxicity mediated via a pathway of genotoxic damage resulting from oxidative DNA attack by free radicals generated during CNT-elicited inflammation. Secondary genotoxicity appears to involve a threshold.


Assuntos
Nanotubos de Carbono/efeitos adversos , Medição de Risco , Animais , Humanos , Exposição por Inalação , Nível de Efeito Adverso não Observado , Exposição Ocupacional , Ratos , Ratos Wistar
6.
J Occup Environ Hyg ; 11(10): 658-64, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24628695

RESUMO

To provide data required for assessing the environmental health and safety risks of nanocomposites, abrasion-induced particle release from single-wall carbon nanotube (SWCNT)/polymer composites with or without thermal aging were evaluated by a shot blast system. First, overall composite weight loss (i.e., overall particle release) as a result of shot blasting was measured. Incorporating 5 wt% SWCNTs in polystyrene (PS) matrix was observed to reduce overall particle release by approximately 30% compared with pure PS. Heat treatment of the 5 wt% SWCNT/PS composites at 100°C for 10 days induced very slight change in overall particle release due to shot blasting. However, heat treatment at 350°C for 1 hr greatly deteriorated the abrasion resistance of the composites, enhancing overall particle release. Second, to verify the existence and form of SWCNTs released from the composites, released particles were observed by electron microscopy. Micron-sized particles with protruding SWCNTs and submicron-sized SWCNT clusters were observed in the particles released from the composites. Heat treatment of the composites at 350°C for 1 hr enhanced SWCNT release, which mainly formed clusters or rope-like bundles.


Assuntos
Nanocompostos/análise , Nanotubos de Carbono/análise , Polímeros/análise , Poluentes Ambientais , Temperatura Alta , Fenômenos Mecânicos , Microscopia Eletrônica , Nanocompostos/ultraestrutura , Nanotubos de Carbono/ultraestrutura , Tamanho da Partícula , Poliestirenos
7.
Toxicol Mech Methods ; 24(3): 196-203, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24392881

RESUMO

Silica nanoparticles (nSiO2s) are an important type of manufactured nanoparticles. Although there are some reports about the cytotoxicity of nSiO2, the association between physical and chemical properties of nSiO2s and their cellular effects is still unclear. In this study, we examined the correlation between the physiochemical properties and cellular effects of three kinds of amorphous nSiO2s; sub-micro-scale amorphous SiO2, and micro-scale amorphous and crystalline SiO2 particles. The SiO2 particles were dispersed in culture medium and applied to HaCaT human keratinocytes and A549 human lung carcinoma cells. nSiO2s showed stronger protein adsorption than larger SiO2 particles. Moreover, the cellular effects of SiO2 particles were independent of the particle size and crystalline phase. The extent of cell membrane damage and intracellular ROS levels were different among nSiO2s. Upon exposure to nSiO2s, some cells released lactate dehydrogenase (LDH), whereas another nSiO2 did not induce LDH release. nSiO2s caused a slight increase in intracellular ROS levels. These cellular effects were independent of the specific surface area and primary particle size of the nSiO2s. Additionally, association of solubility and protein adsorption ability of nSiO2 to its cellular effects seemed to be small. Taken together, our data suggest that nSiO2s do not exert potent cytotoxic effects on cells in culture, especially compared to the effects of micro-scale SiO2 particles. Further studies are needed to address the role of surface properties of nSiO2s on cellular processes and cytotoxicity.


Assuntos
Nanopartículas/toxicidade , Dióxido de Silício/toxicidade , Adsorção , Cálcio/química , Caspase 3/metabolismo , Células Cultivadas , Humanos , Estresse Oxidativo , Tamanho da Partícula , Espécies Reativas de Oxigênio/metabolismo , Dióxido de Silício/química
8.
Inhal Toxicol ; 25(11): 609-20, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24044677

RESUMO

Multi-walled carbon nanotubes (MWCNTs) are interesting new materials, but there is some concern about their harmfulness due to their fibrous nature. To determine the difference in the biological effects of MWCMTs by fiber length, we prepared two MWCNT samples from one bulk sample. One consisted of cut up short fibers (Short; average length=0.94 µm) and the other was just dispersed (Long; average length=3.4 µm). The samples were administered to male Wistar rats by intratracheal instillation at doses of 0.2 mg and 1 mg/animal (Short) and 0.2 mg and 0.6 mg/animal (Long). The animals were sacrificed at time points from 3 d to 12 months after administration. Bronchoalveolar lavage fluid (BALF) was taken from the lungs and pathological specimens were prepared. The concentrations of phospholipids, total protein and surfactant protein D (SP-D) in the pulmonary surfactant of the BALF were determined, the surface tension of BALF was measured, and the inflammation score was determined by the point-counting method to assess pulmonary tissue inflammation. The present study suggests that inflammatory response in the lung was slightly higher for long MWCNTs than for short MWCNTs when compared at the same mass dose. The correlation between pulmonary surfactant components and BALF surface tension was also evaluated. The Spearman's rank correlation coefficients obtained for the phospholipid, total protein and SP-D concentrations were -0.068 (p=0.605), -0.360 (p=0.005) and -0.673 (p=0.000), respectively. Surface tension, measured by a simple method, should be reflected in the change of a surfactant protein, such as SP-D.


Assuntos
Líquido da Lavagem Broncoalveolar/química , Pulmão/efeitos dos fármacos , Nanotubos de Carbono/toxicidade , Administração por Inalação , Animais , Líquido da Lavagem Broncoalveolar/citologia , Contagem de Leucócitos , Pulmão/metabolismo , Pulmão/patologia , Masculino , Neutrófilos/citologia , Neutrófilos/efeitos dos fármacos , Fosfolipídeos/metabolismo , Pneumonia/metabolismo , Pneumonia/patologia , Proteína D Associada a Surfactante Pulmonar/metabolismo , Ratos , Ratos Wistar
9.
Inhal Toxicol ; 25(1): 29-36, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23293971

RESUMO

Inhalation studies and intratracheal instillation studies using laboratory animals are commonly conducted for pulmonary toxicity tests of nanomaterials. In our study, male Wister rats were exposed to nickel oxide (NiO) particles including a nano-scale, even for aerosols and suspensions, in a 4-week inhalation and intratracheal instillation. Using polymorphonuclear neutrophils (PMNs) in bronchoalveolar lavage fluid as a biomarker of inflammation, we attempted to quantify the relationship between responses to inhalation and intratracheal instillation of the nanoparticles, based on surface area doses. Four kinds of NiO suspension samples with different specific surface areas were singly injected via the tracheas of the rats. The relationship between the instilled doses and PMN production was examined 3 days and 1 month after the instillation. In parallel, 4-week inhalation studies, using two of the suspensions, were conducted for aerosols generated by a pressurized nebulizer. NiO samples induced PMN responses 3 days after instillation according to the surface area doses, but not the mass doses, as has been reported in many studies. When the same NiO samples were tested in a 4-week inhalation and intratracheal instillation, the amount of pulmonary deposition of the sample after the 4-week inhalation, and an intratracheally instilled dose about ten-times higher, induced similar PMN responses 3 days after termination of inhalation and instillation. Using the relationship between these responses to 4-week inhalation and intratracheal instillation, it may be possible to estimate what aerosol concentrations of other nanomaterials might cause the same responses of PMN production as intratracheal instillation tests.


Assuntos
Líquido da Lavagem Broncoalveolar , Nanopartículas/administração & dosagem , Neutrófilos/efeitos dos fármacos , Níquel/administração & dosagem , Pneumonia/induzido quimicamente , Animais , Líquido da Lavagem Broncoalveolar/citologia , Relação Dose-Resposta a Droga , Exposição por Inalação , Instilação de Medicamentos , Contagem de Leucócitos , Macrófagos Alveolares/efeitos dos fármacos , Macrófagos Alveolares/ultraestrutura , Masculino , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Nanopartículas/toxicidade , Neutrófilos/ultraestrutura , Níquel/química , Níquel/toxicidade , Tamanho da Partícula , Pneumonia/patologia , Ratos , Ratos Wistar , Propriedades de Superfície , Testes de Toxicidade Subaguda , Traqueia/efeitos dos fármacos
10.
J Appl Toxicol ; 33(10): 1053-60, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22936419

RESUMO

The genotoxicity of multi-walled carbon nanotubes (MWCNTs) was evaluated in vivo with comet assays using the lung cells of rats given MWCNTs. The MWCNTs were intratracheally instilled as a single dose at 0.2 or 1.0 mg kg(-1) or a repeated dose at 0.04 or 0.2 mg kg(-1) , once a week for 5 weeks, to male rats. The rats were sacrificed 3 or 24 h after the single instillation and were sacrificed 3 h after the last instillation in the repeated instillation groups. Histopathological examinations of the lungs revealed that MWCNTs caused inflammatory changes including the infiltration of macrophages and neutrophils after a single instillation and repeated instillation at both doses. In comet assays using rat lung cells, no changes in % Tail DNA were found in any group given MWCNTs. These findings indicate that MWCNTs do not have the potential to cause DNA damage in comet assays using the lung cells of rats given MWCNTs at doses causing inflammatory responses.


Assuntos
Ensaio Cometa/métodos , Pulmão/efeitos dos fármacos , Nanotubos de Carbono/química , Traqueia/efeitos dos fármacos , Animais , Dano ao DNA/efeitos dos fármacos , Pulmão/citologia , Masculino , Ratos , Ratos Sprague-Dawley , Traqueia/citologia
11.
Environ Toxicol ; 28(2): 61-75, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21384495

RESUMO

Chromium(III) oxide (Cr(2)O(3)) is used for industrial applications such as catalysts and pigments. In the classical form, namely the fine particle, Cr(2)O(3) is insoluble and chemically stable. It is classified as a low-toxicity chromium compound. Recently, industrial application of nanoparticles (a new form composed of small particles with a diameter of ≤100 nm, in at least one dimension) has been increasing. Cellular effects induced by Cr(2)O(3) nanoparticles are not known. To shed light upon this, the release of soluble chromium from Cr(2)O(3) nano- and fine-particles in culture medium was compared. Fine Cr(2)O(3) particles were insoluble in the culture medium; on the contrary, Cr(2)O(3) nanoparticles released soluble hexavalent chromium into the culture medium. Cr(2)O(3) nanoparticles showed severe cytotoxicity. The effect of Cr(2)O(3) nanoparticles on cell viability was higher than that of fine particles. Cr(2)O(3) nanoparticles showed cytotoxicity equal to that of hexavalent chromium (K(2)Cr(2)O(7)). Human lung carcinoma A549 cells and human keratinocyte HaCaT cells showed an increase in intracellular reactive oxygen species (ROS) level and activation of antioxidant defense systems on exposure to Cr(2)O(3) nanoparticles. Exposure of Cr(2)O(3) nanoparticles led to caspase-3 activation, showing that the decrease in cell viability by exposure to Cr(2)O(3) nanoparticles was caused by apoptosis. Cellular responses were stronger in the Cr(2)O(3) nanoparticles-exposed cells than in fine Cr(2)O(3) - and CrCl(3) -exposed cells. Cellular uptake of Cr(2)O(3) particles were observed in nano- and fine-particles. The cellular influence of the extracellular soluble trivalent chromium was lower than that of Cr(2)O(3) nanoparticles. Cr(2)O(3) nanoparticles showed cytotoxicity by hexavalent chromium released at outside and inside of cells. The cellular influences of Cr(2)O(3) nanoparticles matched those of hexavalent chromium. In conclusion, Cr(2)O(3) nanoparticles have a high cytotoxic potential.


Assuntos
Apoptose/efeitos dos fármacos , Compostos de Cromo/farmacologia , Nanopartículas , Estresse Oxidativo/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cromo/química , Meios de Cultura/química , Dano ao DNA , Glutationa/análise , Humanos , Queratinócitos/efeitos dos fármacos , Tamanho da Partícula , Espécies Reativas de Oxigênio/metabolismo
12.
Toxicol Mech Methods ; 23(5): 315-22, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23343334

RESUMO

The application of carbon nanotube (CNT) as a functional material to engineering and life sciences is advanced. In order to evaluate the cytotoxicity of CNT in vitro, some chemical and biological reagents are used for dispersants. In the present study, the cellular influences of six kinds of chemical or biological reagents used as dispersants were examined. Pluronic F-127, Pluronic F-68, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), pulmonary surfactant preparation Surfacten®, bovine serum albumin (BSA) and Tween 80 were used in the preparation of CNT-medium dispersants. The influences of each reagent on cell viability in human lung carcinoma A549 cells were small. However, Pluronic F-127, DPPC, Surfacten® and Tween 80 induced an increase of intracellular reactive oxygen species (ROS) level. Next, CNT-medium dispersions were prepared, using each reagent as a dispersant and applied to A549 cells. The cellular influences depended on the kind of dispersant. Cells exposed to CNT dispersion including Pluronic® F-127, Surfacten®, DPPC and Tween 80 showed LDH release to the culture supernatant. Induction of intracellular ROS level was observed in cells exposed to CNT dispersion including each reagent except BSA. These results suggest that the adsorbed dispersant reagents on the surface of the CNT affect its cellular influences, particularly the induction of oxidative stress.


Assuntos
Nanotubos de Carbono , Surfactantes Pulmonares/administração & dosagem , Linhagem Celular Tumoral , Humanos , Poloxâmero/química , Surfactantes Pulmonares/química , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
13.
Toxicol Mech Methods ; 23(8): 598-609, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23742690

RESUMO

Concern over the influence of carbon nanotubes (CNTs) on human health has arisen due to advances; however, little is known about the potential toxicity of CNTs. In this study, impurity-free single-wall carbon nanotubes (SWCNTs), with different physical properties in cell culture medium, were prepared by a novel dispersion procedure. SWCNTs with small bundles (short linear shape) and SWCNTs with large bundles (long linear shape) did not cause a significant inhibition of cell proliferation, induction of apoptosis or arrest of cell cycle progression in A549 alveolar epithelial cells. Expression of many genes involved in the inflammatory response, apoptosis, response to oxidative stress and degradation of the extracellular matrix were not markedly upregulated or downregulated. However, SWCNTs with relatively large bundles significantly increased the level of intracellular reactive oxygen species (ROS) in a dose-dependent manner, and the levels of these ROS were higher than those of SWCNTs with relatively small bundles or commercial SWCNTs with residual metals. Transmission electron microscopy (TEM) revealed that impurity-free SWCNTs were observed in the cytoplasm and vacuoles of cells after 24 h. These results suggested that the physical properties, especially the size and length of the bundles of the SWCNTs dispersed in cell culture medium, contributed to a change in intracellular ROS generation, even for the same bulk SWCNTs. Additionally, the residual metals associated with the manufacturing of SWCNTs may not be a definitive parameter for intracellular ROS generation in A549 cells.


Assuntos
Nanotubos de Carbono , Alvéolos Pulmonares/citologia , Células Cultivadas , Meios de Cultura , Células Epiteliais/citologia , Citometria de Fluxo , Microscopia Eletrônica de Transmissão
14.
Toxicol Rep ; 11: 481-492, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38075012

RESUMO

This study assessed the effects of cellulose nanofibrils (CNFs) and multi-walled carbon nanotubes (MWCNTs) on lung inflammation in a cigarette smoke-induced chronic obstructive pulmonary disease (COPD) mouse model. Prior to instillation, COPD model mice displayed distinctive cellular compositions and elevated cytokine levels in bronchoalveolar lavage fluid (BALF). After intratracheal instillation of 80 µg CNFs, no significant histopathological changes, BALF composition alterations, or cytokine level shifts were observed on day 28. This suggests minimal lung impact and no interference with reducing smoke-induced inflammation. In contrast, the instillation of 80 µg MWCNTs resulted in significant histopathological changes, increased cellular composition, and elevated cytokine levels in BALF on day 28. These findings indicate that CNF exposure had little effect on the lungs and did not impede the reduction of smoke-induced inflammation, while MWCNT exposure hindered the attenuation of pulmonary inflammatory response. The study emphasizes the importance of considering diverse cases, including individuals with pre-existing respiratory conditions, when assessing occupational safety and health risks associated with advanced nanomaterial exposure.

15.
Chem Res Toxicol ; 25(3): 605-19, 2012 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-22136515

RESUMO

"Nanoparticle" is defined as the particles whose diameter in at least one dimension is less than 100 nm. Compared with fine-particles, nanoparticles have large specific surface area. There is a dramatic increase over fine-particles in chemical and physical activities, such as ion release, adsorption ability, and ROS production. These properties are important for industrial use, and many nanoparticles are already used in products familiar to consumers as sunscreens and cosmetics. However, nanoparticle properties beneficial to the industry may also induce biological influences, including toxic activities. Recently, many investigations about the toxicology of nanoparticles have been reported. In the evaluation of nanoparticles toxicity, in vitro studies give us important information, especially in terms of toxic mechanisms. In vitro studies showed that some nanoparticles induce oxidative stress, apoptosis, production of cytokines, and cell death. There are reports that cellular influences of other nanoparticles are small. There are also reports of different results, some with low and some with high influences, for the same nanoparticle. One of the causes of this inconsistency might be a diremption of the living body influence study and the characterization study. Characterization of individual nanoparticles and their dispersions are essential for in vitro evaluation of their biological effects since each nanoparticle shows unique chemical and physical properties. Particularly, the aggregation state and metal ion release ability of nanoparticles affect its cellular influences. Reports concerning the characterization in the in vitro toxicity assessment are increasing. For an accurate risk assessment of nanoparticles, in this review, we outline recent studies of in vitro evaluation of cellular influences induced by nanoparticles. Moreover, we also introduce current studies about the characterization methods of nanoparticles and their dispersions for toxicological evaluation.


Assuntos
Nanopartículas/toxicidade , Animais , Sobrevivência Celular/efeitos dos fármacos , Humanos , Nanopartículas/química , Nanotubos de Carbono/toxicidade
16.
Inhal Toxicol ; 24(7): 391-400, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22642288

RESUMO

The aim of the present study is to understand the association between metal ion release from nickel oxide (NiO) nanoparticles and induction of oxidative stress in the lung. NiO nanoparticles have cytotoxic activity through nickel ion release and subsequent oxidative stress. However, the interaction of oxidative stress and nickel ion release in vivo is still unclear. In the present study, we examined the effect of metal ion release on oxidative stress induced by NiO nanoparticles. Additionally, nano and fine TiO(2) particles as insoluble particles were also examined. Rat lung was exposed to NiO and TiO(2) nanoparticles by intratracheal instillation. The NiO nanoparticles released Ni(2+) in dispersion. Bronchoalveolar lavage fluid (BALF) was collected at 1, 24, 72 h and 1 week after instillation. The lactate dehydrogenase (LDH) and HO-1 levels were elevated at 24 and 72 h after instillation in the animals exposed to the NiO nanoparticles. On the other hand, total hydroxyoctadecadienoic acid (tHODE), which is an oxidative product of linoleic acid, as well as SP-D and α-tochopherol levels were increased at 72 h and 1 week after instillation. Fine NiO particles, and nano and fine TiO(2) particles did not show lung injury or oxidative stress from 1 h to 1 week after instillation. These results suggest that Ni(2+) release is involved in the induction of oxidative stress by NiO nanoparticles in the lung. Ni(2+) release from NiO nanoparticles is an important factor inoxidative stress-related toxicity, not only in vitro but also in vivo.


Assuntos
Pulmão/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Níquel/toxicidade , Titânio/toxicidade , Animais , Líquido da Lavagem Broncoalveolar/química , Linhagem Celular Tumoral , Expressão Gênica/efeitos dos fármacos , Heme Oxigenase (Desciclizante)/genética , Humanos , L-Lactato Desidrogenase/metabolismo , Pulmão/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Proteínas/metabolismo , Proteína D Associada a Surfactante Pulmonar/genética , Ratos , Ratos Wistar , Solubilidade , alfa-Tocoferol/metabolismo
17.
Regul Toxicol Pharmacol ; 62(3): 419-24, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22306441

RESUMO

The genotoxicity of fullerene C(60) nanoparticles was evaluated in vivo with comet assays using the lung cells of rats given C(60) nanoparticles. The C(60) nanoparticles were intratracheally instilled as a single dose at 0.5 or 2.5mg/kg or repeated dose at 0.1 or 0.5mg/kg, once a week for 5 weeks, to male rats. The lungs were obtained 3 or 24h after a single instillation and 3h after repeated instillation. Inflammatory responses were observed in the lungs obtained 24h after a single instillation at 2.5mg/kg and repeated instillation at 0.5mg/kg. Histopathological examinations revealed that C(60) nanoparticles caused slight changes including hemorrhages in alveoli and the cellular infiltration of macrophages and neutrophils in alveoli. In comet assays using rat lung cells, no increase in % Tail DNA was found in any group given C(60) nanoparticles. These findings indicate that C(60) nanoparticles had no potential for DNA damage in comet assays using the lungs cells of rats given C(60) even at doses causing inflammation.


Assuntos
Ensaio Cometa/métodos , Fulerenos/toxicidade , Pulmão/efeitos dos fármacos , Nanopartículas/toxicidade , Animais , Ensaio Cometa/normas , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/fisiologia , Fulerenos/administração & dosagem , Injeções Espinhais , Pulmão/citologia , Pulmão/fisiologia , Masculino , Testes de Mutagenicidade/métodos , Testes de Mutagenicidade/normas , Nanopartículas/administração & dosagem , Tamanho da Partícula , Ratos , Ratos Sprague-Dawley
18.
Regul Toxicol Pharmacol ; 64(1): 124-9, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22735368

RESUMO

The genotoxicity of single-wall carbon nanotubes (SWCNTs) was evaluated in vivo using the comet assay after intratracheal instillation in rats. The SWCNTs were instilled at a dosage of 0.2 or 1.0mg/kg body weight (single instillation group) and 0.04 or 0.2mg/kg body weight once a week for 5weeks (repeated instillation group). As a negative control, 1% Tween 80 was instilled in a similar manner. As a positive control, ethyl methanesulfonate (EMS) at 500mg/kg was administered once orally 3h prior to dissection. Histopathologically, inflammation in the lung was observed for all the SWCNTs in both single and repeated groups. In the comet assay, there was no increase in% tail DNA in any of the SWCNT-treated groups. In the EMS-treated groups, there was a significant increase in% tail DNA compared with the negative control group. The present study indicated that a single intratracheal instillation of SWCNTs (1.0mg/kg) or repeated intratracheal instillation (0.2mg/kg) once a week for five weeks induced a clear inflammatory response (hemorrhage in the alveolus, infiltration of alveolar macrophages and neutrophiles), but no DNA damage, in the lungs in rats. Under the conditions of the test, SWCNTs were not genotoxic in the comet assay following intratracheal instillation in rats.


Assuntos
Mutagênicos/toxicidade , Nanotubos de Carbono/toxicidade , Animais , Ensaio Cometa , Dano ao DNA , Exposição por Inalação/efeitos adversos , Intubação Intratraqueal/efeitos adversos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Masculino , Mutagênicos/administração & dosagem , Mutagênicos/classificação , Nanotubos de Carbono/classificação , Pneumonia/induzido quimicamente , Pneumonia/patologia , Ratos , Ratos Endogâmicos
19.
Toxicol Rep ; 9: 68-77, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35004184

RESUMO

Cellulose nanofibrils (CNFs) are identified as novel nanomaterials with many potential applications. Since CNFs are fibrous manufactured nanomaterials, their potential carcinogenic effects and mesothelial toxicity raise some concerns. In this study, we conducted a standard battery of in vitro and in vivo assays to evaluate the genotoxicity of two CNF types using different manufacturing methods and physicochemical properties. Namely, one was CNF produced via chemical modification by TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl radical)-mediated oxidation, while the other was CNF produced via mechanical defibrillation using needle bleached kraft pulp. A bacterial reverse mutation test and a mouse lymphoma TK assay revealed that CNFs at 100 µg/mL did not induce bacterial reverse mutations and in vitro mammalian cell gene mutation. Further, in vitro chromosomal aberration tests demonstrated that CNFs at 100 µg/mL did not induce chromosomal aberration in Chinese hamster lung fibroblasts. From the mammalian erythrocyte micronucleus test, no statistically significant increase was observed in the proportion of micronucleated polychromatic erythrocytes in the bone marrow cells of rats intratracheally instilled with any concentration of CNFs (0.25-1.0 mg/kg) compared with values from respective negative control groups. Therefore, this battery of in vitro and in vivo assays illustrated that the CNFs examined in this study did not induce genotoxicity, suggesting our results provide valuable insight on the future use of these materials in various industrial applications.

20.
Inhal Toxicol ; 23(7): 407-16, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21639709

RESUMO

We evaluated the pulmonary pathological features of rats that received a single intratracheal instillation and a 4-week inhalation of a fullerene. We used fullerene C(60) (nanom purple; Frontier Carbon Co. Ltd, Japan) in this study. Male Wistar rats received intratracheal dose of 0.1, 0.2, or 1 mg of C(60), and were sacrificed at 3 days, 1 week, 1 month, 3 months, 6 months, and 12 months. In the inhalation study, Wistar rats received C(60) or nickel oxide by whole-body inhalation for 6 h/day, 5 days/week, 4 weeks, and were sacrificed at 3 days, 1 month, and 3 months after the end of exposure. During the observation period, no tumors or granulomas were observed in either study. Histopathological evaluation by the point counting method (PCM) showed that a high dose of C(60) (1 mg) instillation led to a significant increase of areas of inflammation in the early phase (until 1 week). In the inhalation study of the C(60)-exposed group, PCM evaluation showed significant changes in the C(60)-exposed group only at 3 days after exposure; after 1 month, no significant changes were observed. The present study demonstrated that the pulmonary inflammation pattern after exposure to well-characterized C(60) via both intratracheal and inhalation instillation was slight and transient. These results support our previous studies that showed C(60) has no significant adverse effects in intratracheal and inhalation instillation studies.


Assuntos
Fulerenos/administração & dosagem , Exposição por Inalação/efeitos adversos , Lesão Pulmonar/induzido quimicamente , Pulmão/efeitos dos fármacos , Animais , Inflamação/induzido quimicamente , Pulmão/patologia , Masculino , Nanopartículas Metálicas/química , Nível de Efeito Adverso não Observado , Tamanho da Partícula , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA