Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(23)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34884799

RESUMO

There is a lack of knowledge regarding the connection between the ocular and nasal epithelia. This narrative review focuses on conjunctival, corneal, ultrastructural corneal stroma, and nasal epithelia as well as an introduction into their interconnections. We describe in detail the morphology and physiology of the ocular surface, the nasolacrimal ducts, and the nasal cavity. This knowledge provides a basis for functional studies and the development of relevant cell culture models that can be used to investigate the pathogenesis of diseases related to these complex structures. Moreover, we also provide a state-of-the-art overview regarding the development of 3D culture models, which allow for addressing research questions in models resembling the in vivo situation. In particular, we give an overview of the current developments of corneal 3D and organoid models, as well as 3D cell culture models of epithelia with goblet cells (conjunctiva and nasal cavity). The benefits and shortcomings of these cell culture models are discussed. As examples for pathogens related to ocular and nasal epithelia, we discuss infections caused by adenovirus and measles virus. In addition to pathogens, also external triggers such as allergens can cause rhinoconjunctivitis. These diseases exemplify the interconnections between the ocular surface and nasal epithelia in a molecular and clinical context. With a final translational section on optical coherence tomography (OCT), we provide an overview about the applicability of this technique in basic research and clinical ophthalmology. The techniques presented herein will be instrumental in further elucidating the functional interrelations and crosstalk between ocular and nasal epithelia.


Assuntos
Túnica Conjuntiva/metabolismo , Córnea/metabolismo , Cavidade Nasal/anatomia & histologia , Mucosa Nasal/metabolismo , Ducto Nasolacrimal/anatomia & histologia , Infecções por Adenoviridae/patologia , Animais , Bovinos , Técnicas de Cultura de Células em Três Dimensões , Células Cultivadas , Conjuntivite/patologia , Células Epiteliais/metabolismo , Células Caliciformes/metabolismo , Humanos , Sarampo/patologia , Cavidade Nasal/fisiologia , Ducto Nasolacrimal/fisiologia , Coelhos , Tomografia de Coerência Óptica
2.
J Gen Virol ; 101(4): 399-409, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32053093

RESUMO

Oncolytic virotherapy is an emerging treatment option for numerous cancers, with several virus families currently being evaluated in clinical trials. More specifically, vaccine-strain measles virus has arisen as a promising candidate for the treatment of different tumour types in several early clinical trials. Replicating viruses, and especially RNA viruses without proofreading polymerases, can rapidly adapt to varying environments by selecting quasispecies with advantageous genetic mutations. Subsequently, these genetic alterations could potentially weaken the safety profile of virotherapy. In this study, we demonstrate that, following an extended period of virus replication in producer or cancer cell lines, the quasispecies consensus sequence of vaccine strain-derived measles virus accrues a remarkably small number of mutations throughout the nonsegmented negative-stranded RNA genome. Interestingly, we detected a nonrandom distribution of genetic alterations within the genome, with an overall decreasing frequency of mutations from the 3' genome start to its 5' end. Comparing the serially passaged viruses to the parental virus on producer cells, we found that the acquired consensus mutations did not drastically change viral replication kinetics or cytolytic potency. Collectively, our data corroborate the genomic stability and excellent safety profile of oncolytic measles virus, thus supporting its continued development and clinical translation as a promising viro-immunotherapeutic.


Assuntos
Instabilidade Genômica , Vírus do Sarampo/genética , Quase-Espécies/genética , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Chlorocebus aethiops , Humanos , Vírus do Sarampo/crescimento & desenvolvimento , Mutação , Terapia Viral Oncolítica , Inoculações Seriadas , Células Vero , Virulência/genética
3.
J Gen Virol ; 98(9): 2248-2257, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28809150

RESUMO

Viruses from the diverse family of Paramyxoviridae include important pathogens and are applied in gene therapy and for cancer treatment. The Tupaia paramyxovirus (TPMV), isolated from the kidney of a tree shrew, does not infect human cells and neutralizing antibodies against other Paramyxoviridae do not cross-react with TPMV. Here, we present a vector system for de novo generation of infectious TPMV that allows for insertion of additional genes as well as targeting using antibody single-chain variable fragments. We show that the recombinant TPMV specifically infect cells expressing the targeted receptor and replicate in human cells. This vector system provides a valuable tool for both basic research and therapeutic applications.


Assuntos
Técnicas de Transferência de Genes , Vetores Genéticos/genética , Paramyxoviridae/genética , Animais , Linhagem Celular , Vetores Genéticos/fisiologia , Humanos , Paramyxoviridae/fisiologia , Transgenes , Tupaia/virologia
4.
BMC Cancer ; 17(1): 576, 2017 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-28851316

RESUMO

BACKGROUND: Metastatic pancreatic cancer has a dismal prognosis, with a mean six-month progression-free survival of approximately 50% and a median survival of about 11 months. Despite intensive research, only slight improvements of clinical outcome could be achieved over the last decades. Hence, new and innovative therapeutic strategies are urgently required. ParvOryx is a drug product containing native parvovirus H-1 (H-1PV). Since H-1PV was shown to exert pronounced anti-neoplastic effects in pre-clinical models of pancreatic cancer, the drug appears to be a promising candidate for treatment of this malignancy. METHODS: ParvOryx02 is a non-controlled, single arm, open label, dose-escalating, single center trial. In total seven patients with pancreatic cancer showing at least one hepatic metastasis are to be treated with escalating doses of ParvOryx according to the following schedule: i) 40% of the total dose infused intravenously in equal fractions on four consecutive days, ii) 60% of the total dose injected on a single occasion directly into the hepatic metastasis at varying intervals after intravenous infusions. The main eligibility criteria are: age ≥ 18 years, disease progression despite first-line chemotherapy, and at least one hepatic metastasis. Since it is the second trial within the drug development program, the study primarily explores safety and tolerability after further dose escalation of ParvOryx. The secondary objectives are related to the evaluation of certain aspects of anti-tumor activity and clinical efficacy of the drug. DISCUSSION: This trial strongly contributes to the clinical development program of ParvOryx. The individual hazards for patients included in the current study and the environmental risks are addressed and counteracted adequately. Besides information on safety and tolerability of the treatment after further dose escalation, thorough evaluations of pharmacokinetics and intratumoral spread as well as proof-of-concept (PoC) in pancreatic cancer will be gained in the course of the trial. TRIAL REGISTRATION: ClinicalTrials.gov-ID: NCT02653313 , Registration date: Dec. 4th, 2015.


Assuntos
Parvovirus H-1/fisiologia , Terapia Viral Oncolítica/métodos , Neoplasias Pancreáticas/tratamento farmacológico , Administração Intravenosa , Relação Dose-Resposta a Droga , Feminino , Humanos , Injeções Intralesionais , Masculino , Metástase Neoplásica , Terapia Viral Oncolítica/efeitos adversos , Vírus Oncolíticos/fisiologia , Tamanho da Amostra , Análise de Sobrevida , Resultado do Tratamento
5.
Mol Ther ; 22(11): 1949-59, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25156126

RESUMO

We hypothesized that the combination of oncolytic virotherapy with immune checkpoint modulators would reduce tumor burden by direct cell lysis and stimulate antitumor immunity. In this study, we have generated attenuated Measles virus (MV) vectors encoding antibodies against CTLA-4 and PD-L1 (MV-aCTLA-4 and MV-aPD-L1). We characterized the vectors in terms of growth kinetics, antibody expression, and cytotoxicity in vitro. Immunotherapeutic effects were assessed in a newly established, fully immunocompetent murine model of malignant melanoma, B16-CD20. Analyses of tumor-infiltrating lymphocytes and restimulation experiments indicated a favorable immune profile after MV-mediated checkpoint modulation. Therapeutic benefits in terms of delayed tumor progression and prolonged median overall survival were observed for animals treated with vectors encoding anti-CTLA-4 and anti-PD-L1, respectively. Combining systemic administration of antibodies with MV treatment also improved therapeutic outcome. In vivo oncolytic efficacy against human tumors was studied in melanoma xenografts. MV-aCTLA-4 and MV-aPD-L1 were equally efficient as parental MV in this model, with high rates of complete tumor remission (> 80%). Furthermore, we could demonstrate lysis of tumor cells and transgene expression in primary tissue from melanoma patients. The current results suggest rapid translation of combining immune checkpoint modulation with oncolytic viruses into clinical application.


Assuntos
Antígeno B7-H1/metabolismo , Antígeno CTLA-4/metabolismo , Linfócitos do Interstício Tumoral/metabolismo , Melanoma Experimental/terapia , Vírus Oncolíticos/imunologia , Animais , Vetores Genéticos/administração & dosagem , Vírus do Sarampo/genética , Vírus do Sarampo/imunologia , Vírus do Sarampo/metabolismo , Melanoma Experimental/imunologia , Camundongos , Terapia Viral Oncolítica , Vírus Oncolíticos/genética , Vírus Oncolíticos/metabolismo , Resultado do Tratamento
6.
EBioMedicine ; 105: 105219, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38941955

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a tumour entity with unmet medical need. To assess the therapeutic potential of oncolytic virotherapy (OVT) against PDAC, different oncolytic viruses (OVs) are currently investigated in clinical trials. However, systematic comparisons of these different OVs in terms of efficacy against PDAC and biomarkers predicting therapeutic response are lacking. METHODS: We screened fourteen patient-derived PDAC cultures which reflect the intra- and intertumoural heterogeneity of PDAC for their sensitivity to five clinically relevant OVs, namely serotype 5 adenovirus Ad5-hTERT, herpes virus T-VEC, measles vaccine strain MV-NIS, reovirus jin-3, and protoparvovirus H-1PV. Live cell analysis, quantification of viral genome/gene expression, cell viability as well as cytotoxicity assays and titration of viral progeny were conducted. Transcriptome profiling was employed to identify potential predictive biomarkers for response to OV treatment. FINDINGS: Patient-derived PDAC cultures showed individual response patterns to OV treatment. Twelve of fourteen cultures were responsive to at least one OV, with no single OV proving superior or inferior across all cultures. Known host factors for distinct viruses were retrieved as potential biomarkers. Compared to the classical molecular subtype, the quasi-mesenchymal or basal-like subtype of PDAC was found to be more sensitive to H-1PV, jin-3, and T-VEC. Generally, expression of viral entry receptors did not correlate with sensitivity to OV treatment, with one exception: Expression of Galectin-1 (LGALS1), a factor involved in H-1PV entry, positively correlated with H-1PV induced cell killing. Rather, cellular pathways controlling immunological, metabolic and proliferative signaling appeared to determine outcome. For instance, high baseline expression of interferon-stimulated genes (ISGs) correlated with relative resistance to oncolytic measles virus, whereas low cyclic GMP-AMP synthase (cGAS) expression was associated with exceptional response. Combination treatment of MV-NIS with a cGAS inhibitor improved tumour cell killing in several PDAC cultures and cells overexpressing cGAS were found to be less sensitive to MV oncolysis. INTERPRETATION: Considering the heterogeneity of PDAC and the complexity of biological therapies such as OVs, no single biomarker can explain the spectrum of response patterns. For selection of a particular OV, PDAC molecular subtype, ISG expression as well as activation of distinct signaling and metabolic pathways should be considered. Combination therapies can overcome resistance in specific constellations. Overall, oncolytic virotherapy is a viable treatment option for PDAC, which warrants further development. This study highlights the need for personalised treatment in OVT. By providing all primary data, this study provides a rich source and guidance for ongoing developments. FUNDING: German National Science Foundation (Deutsche Forschungsgemeinschaft, DFG), German Cancer Aid (Deutsche Krebshilfe), German National Academic Scholarship Foundation (Studienstiftung des deutschen Volkes), Survival with Pancreatic Cancer Foundation.

7.
Viruses ; 15(2)2023 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-36851522

RESUMO

Virotherapy is a promising, novel form of cancer immunotherapy currently being investigated in pre-clinical and clinical settings. While generally well-tolerated, the anti-tumor potency of oncolytic virus-based monotherapies needs to be improved further. One of the major factors limiting the replication efficiency of oncolytic viruses are the antiviral defense pathways activated by tumor cells. In this study, we have designed and validated a universal expression cassette for artificial microRNAs that can now be adapted to suppress genes of interest, including potential resistance factors. Transcripts are encoded as a primary microRNA for processing via the predominantly nuclear RNase III Drosha. We have engineered an oncolytic measles virus encoding this universal expression cassette for artificial microRNAs. Virally encoded microRNA was expressed in the range of endogenous microRNA transcripts and successfully mediated target protein suppression. However, absolute expression levels of mature microRNAs were limited when delivered by an oncolytic measles virus. We demonstrate that measles virus, in contrast to other cytosolic viruses, does not induce translocation of Drosha from the nucleus into the cytoplasm, potentially resulting in a limited processing efficiency of virus-derived, cytosolically delivered artificial microRNAs. To our knowledge, this is the first report demonstrating functional expression of microRNA from oncolytic measles viruses potentially enabling future targeted knockdown, for instance of antiviral factors specifically in tumor cells.


Assuntos
Sarampo , MicroRNAs , Vírus Oncolíticos , Humanos , Vírus do Sarampo/genética , MicroRNAs/genética , Interferência de RNA , Vírus Oncolíticos/genética , Antivirais
8.
Cell Death Dis ; 14(2): 104, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36765035

RESUMO

Treatment with oncolytic measles vaccines (MV) elicits activation of immune cells, including natural killer (NK) cells. However, we found that MV-activated NK cells show only modest direct cytotoxic activity against tumor cells. To specifically direct NK cells towards tumor cells, we developed oncolytic measles vaccines encoding bispecific killer engagers (MV-BiKE) targeting CD16A on NK cells and carcinoembryonic antigen (CEA) as a model tumor antigen. MV-BiKE are only slightly attenuated compared to parental MV and mediate secretion of functional BiKE from infected tumor cells. We tested MV-BiKE activity in cocultures of colorectal or pancreatic cancer cells with primary human NK cells. MV-BiKE mediate expression of effector cytokines, degranulation and specific anti-tumor cytotoxicity by NK cells. Experiments with patient-derived pancreatic cancer cultures indicate that efficacy of MV-BiKE may vary between individual tumors with differential virus permissiveness. Remarkably, we confirmed MV-BiKE activity in primaryhuman colorectal carcinoma specimens with autochthonous tumor and NK cells.This study provides proof-of-concept for MV-BiKE as a novel immunovirotherapy to harness virus-activated NK cells as anti-tumor effectors.


Assuntos
Sarampo , Neoplasias Pancreáticas , Vacinas , Humanos , Células Matadoras Naturais , Antígenos de Neoplasias/metabolismo , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/metabolismo , Vacinas/metabolismo , Sarampo/metabolismo , Linhagem Celular Tumoral
9.
J Virol ; 85(24): 13322-32, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21957284

RESUMO

Human immunodeficiency virus type 1 (HIV-1) Gag is the main structural protein driving assembly and release of virions from infected cells. Gag alone is capable of self-assembly in vitro, but host factors have been shown to play a role in efficient viral replication and particle morphogenesis within the living cell. In a series of affinity purification experiments, we identified the cellular protein Lyric to be an HIV-1 Gag-interacting protein. Lyric was previously described to be an HIV-inducible gene and is involved in various signaling pathways. Gag interacts with endogenous Lyric via its matrix (MA) and nucleocapsid (NC) domains. This interaction requires Gag multimerization and Lyric amino acids 101 to 289. Endogenous Lyric is incorporated into HIV-1 virions and is cleaved by the viral protease. Gag-Lyric interaction was also observed for murine leukemia virus and equine infectious anemia virus, suggesting that it represents a conserved feature among retroviruses. Expression of the Gag binding domain of Lyric increased Gag expression levels and viral infectivity, whereas expression of a Lyric mutant lacking the Gag binding site resulted in lower Gag expression and decreased viral infectivity. The results of the current study identify Lyric to be a cellular interaction partner of HIV-1 Gag and hint at a potential role in regulating infectivity. Further experiments are needed to elucidate the precise role of this interaction.


Assuntos
Moléculas de Adesão Celular/metabolismo , HIV-1/patogenicidade , Interações Hospedeiro-Patógeno , Mapeamento de Interação de Proteínas , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Humanos , Vírus da Anemia Infecciosa Equina/patogenicidade , Vírus da Leucemia Murina/patogenicidade , Proteínas de Membrana , Ligação Proteica , Proteínas de Ligação a RNA
10.
Methods Mol Biol ; 2521: 233-248, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35733001

RESUMO

Oncolytic virotherapy is a compelling strategy to combine cancer gene therapy with immunotherapy. Lytic virus replication in malignant cells not only enables localized transgene expression based on engineered vectors but also triggers immunogenic tumor cell death and elicits inflammation in the tumor microenvironment. Modified oncolytic viruses encoding immunomodulators have been developed to enhance antitumor immune effects and therapeutic efficacy. As one example, bispecific molecules that engage immune cells to exert antitumor cytotoxicity can be encoded within the viral vector. This chapter describes an in vitro coculture experiment to study functionality and antitumor efficacy of engineered measles vaccine strain virus encoding natural killer cell engagers. In a flow cytometry-based analysis, target cell death of noninfected bystander cancer cells and effector functions of primary human natural killer cells are investigated. This methodology can facilitate assessment of advanced oncolytic viral vectors for cancer immunotherapy.


Assuntos
Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Morte Celular , Humanos , Imunoterapia/métodos , Células Matadoras Naturais , Vírus do Sarampo/genética , Neoplasias/genética , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Microambiente Tumoral
11.
Commun Med (Lond) ; 2: 33, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35603308

RESUMO

Recent years have seen rapid advances in the preclinical development and clinical evaluation of oncolytic (cancer-lysing) virus-based therapies, and these are emerging as treatment modality for some cancers. There are challenges to address, however, if we are to maximize the impact of these therapies in patients.

12.
Mol Ther Oncolytics ; 24: 43-58, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-34977341

RESUMO

PD-1/PD-L1 checkpoint blockade has achieved unprecedented success in cancer immunotherapy. Nevertheless, many immune-excluded tumors are resistant to therapy. Combination with oncolytic virotherapy may overcome resistance by inducing acute inflammation, immune cell recruitment, and remodeling of the tumor immune environment. Here, we assessed the combination of oncolytic measles vaccine (MV) vectors and PD-1/PD-L1 blockade. In the MC38cea model of measles virus oncolysis, MV combined with anti-PD-1 and MV vectors encoding anti-PD-1 or anti-PD-L1 antibodies achieved modest survival benefits compared with control MV or vectors encoding the antibody constant regions only. Analyses of tumor samples and tumor-draining lymph nodes revealed slight increases in intratumoral T cell effector cytokines as well as a shift toward an effector memory phenotype in the T cell compartment. Importantly, increased IFN-γ recall responses were observed in tumor rechallenge experiments with mice in complete tumor remission after treatment with MV encoding anti-PD-1 or anti-PD-L1 compared with control MV. These results prompted us to generate MV encoding the clinically approved agents pembrolizumab and nivolumab. Previously, we have generated MV encoding atezolizumab. We demonstrated the functionality of the novel vectors in vitro. We envision these vectors as therapeutics that induce and support durable anti-tumor immune memory.

13.
Front Immunol ; 13: 1096162, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36726983

RESUMO

Introduction: Pancreatic ductal adenocarcinoma (PDAC) is largely refractory to cancer immunotherapy with PD-1 immune checkpoint blockade (ICB). Oncolytic virotherapy has been shown to synergize with ICB. In this work, we investigated the combination of anti-PD-1 and oncolytic measles vaccine in an immunocompetent transplantable PDAC mouse model. Methods: We characterized tumor-infiltrating T cells by immunohistochemistry, flow cytometry and T cell receptor sequencing. Further, we performed gene expression profiling of tumor samples at baseline, after treatment, and when tumors progressed. Moreover, we analyzed systemic anti-tumor and anti-viral immunity. Results: Combination treatment significantly prolonged survival compared to monotherapies. Tumor-infiltrating immune cells were increased after virotherapy. Gene expression profiling revealed a unique, but transient signature of immune activation after combination treatment. However, systemic anti-tumor immunity was induced by virotherapy and remained detectable even when tumors progressed. Anti-PD-1 treatment did not impact anti-viral immunity. Discussion: Our results indicate that combined virotherapy and ICB induces anti-tumor immunity and reshapes the tumor immune environment. However, further refinement of this approach may be required to develop its full potential and achieve durable efficacy.


Assuntos
Carcinoma Ductal Pancreático , Terapia Viral Oncolítica , Neoplasias Pancreáticas , Camundongos , Animais , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/genética , Imunoterapia/métodos , Terapia Viral Oncolítica/métodos , Neoplasias Pancreáticas
14.
Cancers (Basel) ; 13(3)2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535479

RESUMO

Measles virus (MeV) preferentially replicates in malignant cells, leading to tumor lysis and priming of antitumor immunity. Live attenuated MeV vaccine strains are therefore under investigation as cancer therapeutics. The versatile MeV reverse genetics systems allows for engineering of advanced targeted, armed, and shielded oncolytic viral vectors. Therapeutic efficacy can further be enhanced by combination treatments. An emerging focus in this regard is combination immunotherapy, especially with immune checkpoint blockade. Despite challenges arising from antiviral immunity, availability of preclinical models, and GMP production, early clinical trials have demonstrated safety of oncolytic MeV and yielded promising efficacy data. Future clinical trials with engineered viruses, rational combination regimens, and comprehensive translational research programs will realize the potential of oncolytic immunotherapy.

15.
J Hematol Oncol ; 14(1): 63, 2021 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-33863363

RESUMO

Bispecific T cell engagers (BiTEs) are an innovative class of immunotherapeutics that redirect T cells to tumor surface antigens. While efficacious against certain hematological malignancies, limited bioavailability and severe toxicities have so far hampered broader clinical application, especially against solid tumors. Another emerging cancer immunotherapy are oncolytic viruses (OVs) which selectively infect and replicate in malignant cells, thereby mediating tumor vaccination effects. These oncotropic viruses can serve as vectors for tumor-targeted immunomodulation and synergize with other immunotherapies. In this article, we discuss the use of OVs to overcome challenges in BiTE therapy. We review the current state of the field, covering published preclinical studies as well as ongoing clinical investigations. We systematically introduce OV-BiTE vector design and characteristics as well as evidence for immune-stimulating and anti-tumor effects. Moreover, we address additional combination regimens, including CAR T cells and immune checkpoint inhibitors, and further strategies to modulate the tumor microenvironment using OV-BiTEs. The inherent complexity of these novel therapeutics highlights the importance of translational research including correlative studies in early-phase clinical trials. More broadly, OV-BiTEs can serve as a blueprint for diverse OV-based cancer immunotherapies.


Assuntos
Imunoterapia/métodos , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/patogenicidade , Linfócitos T/imunologia , Humanos , Microambiente Tumoral
16.
Mol Ther Oncolytics ; 21: 340-355, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34141871

RESUMO

Advanced pancreatic cancer is characterized by few treatment options and poor outcomes. Oncolytic virotherapy and chemotherapy involve complementary pharmacodynamics and could synergize to improve therapeutic efficacy. Likewise, multimodality treatment may cause additional toxicity, and new agents have to be safe. Balancing both aims, we generated an oncolytic measles virus for 5-fluorouracil-based chemovirotherapy of pancreatic cancer with enhanced tumor specificity through microRNA-regulated vector tropism. The resulting vector encodes a bacterial prodrug convertase, cytosine deaminase-uracil phosphoribosyl transferase, and carries synthetic miR-148a target sites in the viral F gene. Combination of the armed and targeted virus with 5-fluorocytosine, a prodrug of 5-fluorouracil, resulted in cytotoxicity toward both infected and bystander pancreatic cancer cells. In pancreatic cancer xenografts, a single intratumoral injection of the virus induced robust in vivo expression of prodrug convertase. Based on intratumoral transgene expression kinetics, we devised a chemovirotherapy regimen to assess treatment efficacy. Concerted multimodality treatment with intratumoral virus and systemic prodrug administration delayed tumor growth and prolonged survival of xenograft-bearing mice. Our results demonstrate that 5-fluorouracil-based chemovirotherapy with microRNA-sensitive measles virus is an effective strategy against pancreatic cancer at a favorable therapeutic index that warrants future clinical translation.

17.
Clin Cancer Res ; 27(20): 5546-5556, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34426438

RESUMO

PURPOSE: To investigate the safety, clinical efficacy, virus pharmacokinetics, shedding, and immune response after administration of an oncolytic parvovirus (H-1PV, ParvOryx) to patients with metastatic pancreatic ductal adenocarcinoma (PDAC) refractory to first-line therapy. PATIENTS AND METHODS: This is a noncontrolled, single-arm, open-label, dose-escalating, single-center clinical trial. Seven patients with PDAC and at least one liver metastasis were included. ParvOryx was administered intravenously on 4 consecutive days and as an intralesional injection, 6 to 13 days thereafter. Altogether, three escalating dose levels were investigated. In addition, gemcitabine treatment was initiated on day 28. RESULTS: ParvOryx showed excellent tolerability with no dose-limiting toxicities. One patient had a confirmed partial response and one patient revealed an unconfirmed partial response according to RECIST criteria. Both patients showed remarkably long surivial of 326 and 555 days, respectively. Investigation of pharmacokinetics and virus shedding revealed dose dependency with no excretion of active virus particles in saliva or urine and very limited excretion in feces. H-1PV nucleic acids were detected in tumor samples of four patients. All patients showed T-cell responses to viral proteins. An interesting immunologic pattern developed in tumor tissues and in blood of both patients with partial response suggesting immune activation after administration of ParvOryx. CONCLUSIONS: The trial met all primary objectives, revealed no environmental risks, and indicated favorable immune modulation after administration of ParvOryx. It can be considered a good basis for further systematic clinical development alone or in combination with immunomodulatory compounds.


Assuntos
Adenocarcinoma/secundário , Adenocarcinoma/terapia , Carcinoma Ductal Pancreático/secundário , Carcinoma Ductal Pancreático/terapia , Parvovirus H-1 , Sistema Imunitário/imunologia , Terapia Viral Oncolítica , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/terapia , Idoso , Humanos , Pessoa de Meia-Idade , Terapia Viral Oncolítica/efeitos adversos
18.
Viruses ; 13(8)2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34452286

RESUMO

Virotherapy research involves the development, exploration, and application of oncolytic viruses that combine direct killing of cancer cells by viral infection, replication, and spread (oncolysis) with indirect killing by induction of anti-tumor immune responses. Oncolytic viruses can also be engineered to genetically deliver therapeutic proteins for direct or indirect cancer cell killing. In this review-as part of the special edition on "State-of-the-Art Viral Vector Gene Therapy in Germany"-the German community of virotherapists provides an overview of their recent research activities that cover endeavors from screening and engineering viruses as oncolytic cancer therapeutics to their clinical translation in investigator-initiated and sponsored multi-center trials. Preclinical research explores multiple viral platforms, including new isolates, serotypes, or fitness mutants, and pursues unique approaches to engineer them towards increased safety, shielded or targeted delivery, selective or enhanced replication, improved immune activation, delivery of therapeutic proteins or RNA, and redirecting antiviral immunity for cancer cell killing. Moreover, several oncolytic virus-based combination therapies are under investigation. Clinical trials in Germany explore the safety and potency of virotherapeutics based on parvo-, vaccinia, herpes, measles, reo-, adeno-, vesicular stomatitis, and coxsackie viruses, including viruses encoding therapeutic proteins or combinations with immune checkpoint inhibitors. These research advances represent exciting vantage points for future endeavors of the German virotherapy community collectively aimed at the implementation of effective virotherapeutics in clinical oncology.


Assuntos
Neoplasias/terapia , Terapia Viral Oncolítica , Vírus Oncolíticos , Animais , Ensaios Clínicos como Assunto , Engenharia Genética , Alemanha , Humanos , Vírus Oncolíticos/genética
19.
Methods Mol Biol ; 2058: 111-126, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31486034

RESUMO

With the recognition of oncolytic virotherapy as an immunotherapy, the distinct interactions between oncolytic agents and the immune system have come into focus. The role of the immune system in oncolytic virotherapy is somewhat ambiguous: While preexisting or arising immunity directed against viral antigens may preclude efficient viral replication and spread, immunity directed against tumor antigens is considered essential for long-term treatment success. Aside from the antiviral and antitumor immune status of the patient, the specific immunological microenvironment in a given tumor adds an additional layer of complexity.In this review we focus on the case of measles virus, which has long been known for its multifaceted interplay with the immune system. The high prevalence of measles-neutralizing antibodies in the general population may pose additional challenges. The oncolytic measles virus vector platform offers manifold opportunities for tumor-targeted immunomodulation. This review provides a survey of immunomodulation in the context of measles virotherapy including strategies to suppress or circumvent antiviral immunity as well as enhance antitumor immunity that have been pursued in preclinical and clinical studies. Understanding and selective manipulation of the intricate balance between antiviral and antitumor immunity will be crucial to develop the full potential of oncolytic virotherapy.


Assuntos
Vetores Genéticos/genética , Imunomodulação , Vírus do Sarampo/genética , Terapia Viral Oncolítica , Vírus Oncolíticos/genética , Animais , Biomarcadores , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade , Imunoterapia/métodos , Vírus do Sarampo/imunologia , Neoplasias/etiologia , Neoplasias/patologia , Neoplasias/terapia , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/imunologia , Microambiente Tumoral/imunologia , Replicação Viral , Eliminação de Partículas Virais
20.
Cytokine Growth Factor Rev ; 56: 28-38, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32660751

RESUMO

The study of measles virus (MeV) as a cancer immunotherapeutic was prompted by clinical observations of leukemia and lymphoma regressions in patients following measles virus infection in the 1970s and 1980s. Since then, numerous preclinical studies have confirmed the oncolytic activity of MeV vaccine strains as well as their potential to promote long-lasting tumor-specific immune responses. Early clinical data indicate that some of these effects may translate to the treatment of cancer patients. In this review, we provide a structured summary of current evidence for the anti-tumor immune activity of oncolytic MeV. We start with an overview of MeV oncolysis and MeV-induced immunogenic cell death. Next, we relate findings on MeV-mediated activation of antigen-presenting cells, T cell priming and effector mechanisms to the cancer immunity cycle. We discuss additional factors in the tumor microenvironment which are modulated by MeV treatment as well as the role of anti-viral immunity. Based on these findings, we highlight avenues for rational enhancement of oncolytic MeV immunotherapy by vector engineering. We further point to advantages and drawbacks of experimental models and propose areas warranting promising research. Lastly, we review the available immunomonitoring data from several Phase I clinical trials. While this review presents data for MeV, the concepts and principles introduced herein apply to other oncolytic viruses, providing a framework to assess novel cancer immunotherapies.


Assuntos
Imunoterapia , Vírus do Sarampo , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Vacina contra Sarampo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA