Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Appl ; 32(6): e2636, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35404495

RESUMO

Functional traits are proxies for a species' ecology and physiology and are often correlated with plant vital rates. As such they have the potential to guide species selection for restoration projects. However, predictive trait-based models often only explain a small proportion of plant performance, suggesting that commonly measured traits do not capture all important ecological differences between species. Some residual variation in vital rates may be evolutionarily conserved and captured using taxonomic groupings alongside common functional traits. We tested this hypothesis using growth rate data for 17,299 trees and shrubs from 80 species of Eucalyptus and 43 species of Acacia, two hyper-diverse and co-occurring genera, collected from 497 neighborhood plots in 137 Australian mixed-species revegetation plantings. We modeled relative growth rates of individual plants as a function of environmental conditions, species-mean functional traits, and neighbor density and diversity, across a moisture availability gradient. We then assessed whether the strength and direction of these relationships differed between the two genera. We found that the inclusion of genus-specific relationships offered a significant but modest improvement to model fit (1.6%-1.7% greater R2 than simpler models). More importantly, almost all correlates of growth rate differed between Eucalyptus and Acacia in strength, direction, or how they changed along the moisture gradient. These differences mapped onto physiological differences between the genera that were not captured solely by measured functional traits. Our findings suggest taxonomic groupings can capture or mediate variation in plant performance missed by common functional traits. The inclusion of taxonomy can provide a more nuanced understanding of how functional traits interact with abiotic and biotic conditions to drive plant performance, which may be important for constructing trait-based frameworks to improve restoration outcomes.


Assuntos
Acacia , Eucalyptus , Austrália , Folhas de Planta/fisiologia , Plantas , Árvores/fisiologia
2.
J Environ Manage ; 193: 290-299, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28232243

RESUMO

Reforestation of agricultural lands with mixed-species environmental plantings can effectively sequester C. While accurate and efficient methods for predicting soil organic C content and composition have recently been developed for soils under agricultural land uses, such methods under forested land uses are currently lacking. This study aimed to develop a method using infrared spectroscopy for accurately predicting total organic C (TOC) and its fractions (particulate, POC; humus, HOC; and resistant, ROC organic C) in soils under environmental plantings. Soils were collected from 117 paired agricultural-reforestation sites across Australia. TOC fractions were determined in a subset of 38 reforested soils using physical fractionation by automated wet-sieving and 13C nuclear magnetic resonance (NMR) spectroscopy. Mid- and near-infrared spectra (MNIRS, 6000-450 cm-1) were acquired from finely-ground soils from environmental plantings and agricultural land. Satisfactory prediction models based on MNIRS and partial least squares regression (PLSR) were developed for TOC and its fractions. Leave-one-out cross-validations of MNIRS-PLSR models indicated accurate predictions (R2 > 0.90, negligible bias, ratio of performance to deviation > 3) and fraction-specific functional group contributions to beta coefficients in the models. TOC and its fractions were predicted using the cross-validated models and soil spectra for 3109 reforested and agricultural soils. The reliability of predictions determined using k-nearest neighbour score distance indicated that >80% of predictions were within the satisfactory inlier limit. The study demonstrated the utility of infrared spectroscopy (MNIRS-PLSR) to rapidly and economically determine TOC and its fractions and thereby accurately describe the effects of land use change such as reforestation on agricultural soils.


Assuntos
Reprodutibilidade dos Testes , Solo/química , Agricultura , Carbono/química , Espectrofotometria Infravermelho
3.
Environ Monit Assess ; 189(8): 416, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28748427

RESUMO

Stem diameter is one of the most common measurements made to assess the growth of woody vegetation, and the commercial and environmental benefits that it provides (e.g. wood or biomass products, carbon sequestration, landscape remediation). Yet inconsistency in its measurement is a continuing source of error in estimates of stand-scale measures such as basal area, biomass, and volume. Here we assessed errors in stem diameter measurement through repeated measurements of individual trees and shrubs of varying size and form (i.e. single- and multi-stemmed) across a range of contrasting stands, from complex mixed-species plantings to commercial single-species plantations. We compared a standard diameter tape with a Stepped Diameter Gauge (SDG) for time efficiency and measurement error. Measurement errors in diameter were slightly (but significantly) influenced by size and form of the tree or shrub, and stem height at which the measurement was made. Compared to standard tape measurement, the mean systematic error with SDG measurement was only -0.17 cm, but varied between -0.10 and -0.52 cm. Similarly, random error was relatively large, with standard deviations (and percentage coefficients of variation) averaging only 0.36 cm (and 3.8%), but varying between 0.14 and 0.61 cm (and 1.9 and 7.1%). However, at the stand scale, sampling errors (i.e. how well individual trees or shrubs selected for measurement of diameter represented the true stand population in terms of the average and distribution of diameter) generally had at least a tenfold greater influence on random errors in basal area estimates than errors in diameter measurements. This supports the use of diameter measurement tools that have high efficiency, such as the SDG. Use of the SDG almost halved the time required for measurements compared to the diameter tape. Based on these findings, recommendations include the following: (i) use of a tape to maximise accuracy when developing allometric models, or when monitoring relatively small changes in permanent sample plots (e.g. National Forest Inventories), noting that care is required in irregular-shaped, large-single-stemmed individuals, and (ii) use of a SDG to maximise efficiency when using inventory methods to assess basal area, and hence biomass or wood volume, at the stand scale (i.e. in studies of impacts of management or site quality) where there are budgetary constraints, noting the importance of sufficient sample sizes to ensure that the population sampled represents the true population.


Assuntos
Monitoramento Ambiental/métodos , Caules de Planta/crescimento & desenvolvimento , Biomassa , Carbono/análise , Sequestro de Carbono , Monitoramento Ambiental/normas , Florestas , Modelos Teóricos , Caules de Planta/química , Viés de Seleção , Árvores/crescimento & desenvolvimento , Madeira/química
4.
Glob Chang Biol ; 22(6): 2106-24, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26683241

RESUMO

Accurate ground-based estimation of the carbon stored in terrestrial ecosystems is critical to quantifying the global carbon budget. Allometric models provide cost-effective methods for biomass prediction. But do such models vary with ecoregion or plant functional type? We compiled 15 054 measurements of individual tree or shrub biomass from across Australia to examine the generality of allometric models for above-ground biomass prediction. This provided a robust case study because Australia includes ecoregions ranging from arid shrublands to tropical rainforests, and has a rich history of biomass research, particularly in planted forests. Regardless of ecoregion, for five broad categories of plant functional type (shrubs; multistemmed trees; trees of the genus Eucalyptus and closely related genera; other trees of high wood density; and other trees of low wood density), relationships between biomass and stem diameter were generic. Simple power-law models explained 84-95% of the variation in biomass, with little improvement in model performance when other plant variables (height, bole wood density), or site characteristics (climate, age, management) were included. Predictions of stand-based biomass from allometric models of varying levels of generalization (species-specific, plant functional type) were validated using whole-plot harvest data from 17 contrasting stands (range: 9-356 Mg ha(-1) ). Losses in efficiency of prediction were <1% if generalized models were used in place of species-specific models. Furthermore, application of generalized multispecies models did not introduce significant bias in biomass prediction in 92% of the 53 species tested. Further, overall efficiency of stand-level biomass prediction was 99%, with a mean absolute prediction error of only 13%. Hence, for cost-effective prediction of biomass across a wide range of stands, we recommend use of generic allometric models based on plant functional types. Development of new species-specific models is only warranted when gains in accuracy of stand-based predictions are relatively high (e.g. high-value monocultures).


Assuntos
Biomassa , Ecossistema , Modelos Biológicos , Árvores/crescimento & desenvolvimento , Austrália , Carbono , Sequestro de Carbono , Eucalyptus/crescimento & desenvolvimento , Florestas , Caules de Planta/crescimento & desenvolvimento , Madeira/crescimento & desenvolvimento
6.
Sci Total Environ ; 704: 135345, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-31831252

RESUMO

Intensification of the dairy industry globally, combined with a changing climate, has placed increased pressure on natural capital assets (and the flow of ecosystem services) on farms. Agroforestry is widely promoted as an intervention to address these issues. While some benefits of integrating trees on farms, such as carbon sequestration and biodiversity, are reasonably well known, less is known about other potential benefits, such as on-farm production. Understanding and quantifying these benefits would inform farm planning and decision-making. We used a systematic review approach to analyse the evidence base for biophysical ecosystem services from woody systems (including shelterbelts, riparian plantings, plantations, pasture trees, silvopasture and remnant native vegetation) provided to grazed dairy enterprises. We identified 83 publications containing 123 records that fit our review criteria of reporting on biophysical ecosystem services from woody systems on dairy farms relative to a grazed pasture comparison. For each relationship between a woody system and ecosystem service, we assessed the level of support, strength and predominant direction of evidence, and summarised the causal relationships (woody system ≫ mechanism ≫ outcome). Shelterbelts and riparian plantings were the most commonly reported woody systems. Linkages between woody systems and ecosystem services were largely positive, with the types of services provided and their importance differing among systems. Mean evaluation scores for the strength of the evidence were moderate to strong. However, the number of records for each relationship was often low. Consequently, only eight of the 30 causal pathways identified had high confidence; a further 14 had medium confidence indicating that these have good potential to deliver benefits but warrant further work. Although the evidence here was largely qualitative, our results provide strong support for the internal benefits that natural capital assets, such as on-farm woody systems, can provide to the productivity and resilience of grazed dairy enterprises.


Assuntos
Indústria de Laticínios/métodos , Árvores , Biodiversidade , Sequestro de Carbono , Mudança Climática , Conservação dos Recursos Naturais , Ecossistema , Fazendas
7.
Ecol Evol ; 9(24): 14379-14393, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31938526

RESUMO

To combat global warming and biodiversity loss, we require effective forest restoration that encourages recovery of species diversity and ecosystem function to deliver essential ecosystem services, such as biomass accumulation. Further, understanding how and where to undertake restoration to achieve carbon sequestration and biodiversity conservation would provide an opportunity to finance ecosystem restoration under carbon markets. We surveyed 30 native mixed-species plantings in subtropical forests and woodlands in Australia and used structural equation modeling to determine vegetation, soil, and climate variables most likely driving aboveground biomass accrual and bird richness and investigate the relationships between plant diversity, aboveground biomass accrual, and bird diversity. We focussed on woodland and forest-dependent birds, and functional groups at risk of decline (insectivorous, understorey-nesting, and small-bodied birds). We found that mean moisture availability strongly limits aboveground biomass accrual and bird richness in restoration plantings, indicating potential synergies in choosing sites for carbon and biodiversity purposes. Counter to theory, woody plant richness was a poor direct predictor of aboveground biomass accrual, but was indirectly related via significant, positive effects of stand density. We also found no direct relationship between aboveground biomass accrual and bird richness, likely because of the strong effects of moisture availability on both variables. Instead, moisture availability and patch size strongly and positively influenced the richness of woodland and forest-dependent birds. For understorey-nesting birds, however, shrub cover and patch size predicted richness. Stand age or area of native vegetation surrounding the patch did not influence bird richness. Our results suggest that in subtropical biomes, planting larger patches to higher densities, ideally using a diversity of trees and shrubs (characteristics of ecological plantings) in more mesic locations will enhance the provision of carbon and biodiversity cobenefits. Further, ecological plantings will aid the rapid recovery of woodland and forest bird richness, with comparable aboveground biomass accrual to less diverse forestry plantations.

8.
Sci Total Environ ; 615: 348-359, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28982083

RESUMO

Reforestation of agricultural land with mixed-species environmental plantings of native trees and shrubs contributes to abatement of greenhouse gas emissions through sequestration of carbon, and to landscape remediation and biodiversity enhancement. Although accumulation of carbon in biomass is relatively well understood, less is known about associated changes in soil organic carbon (SOC) following different types of reforestation. Direct measurement of SOC may not be cost effective where rates of SOC sequestration are relatively small and/or highly spatially-variable, thereby requiring intensive sampling. Hence, our objective was to develop a verified modelling approach for determining changes in SOC to facilitate the inclusion of SOC in the carbon accounts of reforestation projects. We measured carbon stocks of biomass, litter and SOC (0-30cm) in 125 environmental plantings (often paired to adjacent agricultural sites), representing sites of varying productivity across the Australian continent. After constraining a carbon accounting model to observed measures of growth, allocation of biomass, and rates of litterfall and litter decomposition, the model was calibrated to maximise the efficiency of prediction of SOC and its fractions. Uncertainties in both measured and modelled results meant that efficiencies of prediction of SOC across the 125 contrasting plantings were only moderate, at 39-68%. Data-informed modelling nonetheless improved confidence in outputs from scenario analyses, confirming that: (i) reforestation on agricultural land highly depleted in SOC (i.e. previously under cropping) had the highest capacity to sequester SOC, particularly where rainfall was relatively high (>600mmyear-1), and; (ii) decreased planting width and increased stand density and the proportion of eucalypts enhanced rates of SOC sequestration. These results improve confidence in predictions of SOC following environmental reforestation under varying conditions. The calibrated model will be a useful tool for informing land managers and policy makers seeking to understand the dynamics of SOC following such reforestation.

9.
Tree Physiol ; 27(8): 1113-24, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17472938

RESUMO

Increases in plant size and structural complexity with increasing age have important implications for water flow through trees. Water supply to the crown is influenced by both the cross-sectional area and the permeability of sapwood. It has been hypothesized that hydraulic conductivity within sapwood increases with age. We investigated changes in sapwood permeability (k) and anatomy with tree age and height in the broad-leaved evergreen species Eucalyptus regnans F. Muell. Sapwood was sampled at breast height from trees ranging from 8 to 240 years old, and at three height positions on the main stem of 8-year-old trees. Variation in k was not significant among sampling height positions in young trees. However, k at breast height increased with tree age. This was related to increases in both vessel frequency and vessel diameter, resulting in a greater proportion of sapwood being occupied by vessel lumina. Sapwood hydraulic conductivity (the product of k and sapwood area) also increased with increasing tree age. However, at the stand level, there was a decrease in forest sapwood hydraulic conductivity with increasing stand age, because of a decrease in the number of trees per hectare. Across all ages, there were significant relationships between k and anatomy, with individual anatomical characteristics explaining 33-62% of the variation in k. There was also strong agreement between measured k and permeability predicted by the Hagen-Poiseuille equation. The results support the hypothesis of an increase in sapwood permeability at breast height with age. Further measurements are required to confirm this result at other height positions in older trees. The significance of tree-level changes in sapwood permeability for stand-level water relations is discussed.


Assuntos
Eucalyptus/metabolismo , Árvores/metabolismo , Água/metabolismo , Madeira/metabolismo , Fatores Etários , Eucalyptus/anatomia & histologia , Permeabilidade , Árvores/anatomia & histologia , Madeira/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA