Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2661: 75-88, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37166632

RESUMO

Cryoelectron tomography is a method to image biological samples three-dimensionally at molecular resolution. This modality provides insights into intracellular processes in their physiological settings. Obtaining a high-quality sample for cryoelectron tomography on mitochondria, however, can be challenging. In this chapter, we describe the crucial steps from sample preparation to data acquisition enabling studies of mitochondrial translation in situ by cryoelectron tomography. We provide detailed protocols for yeast and human mitochondria preparations yielding a high concentration of intact mitochondrial vesicles on cryo-EM grids. In addition, we describe a workflow for particle identification and spatial mapping in context of the organelle.


Assuntos
Mitocôndrias , Biossíntese de Proteínas , Humanos , Mitocôndrias/metabolismo , Tomografia com Microscopia Eletrônica/métodos , Saccharomyces cerevisiae , Manejo de Espécimes/métodos , Microscopia Crioeletrônica/métodos
2.
Methods Mol Biol ; 2192: 243-268, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33230778

RESUMO

Cryo-electron tomography (cryo-ET) enables the three-dimensional (3D) visualization of macromolecular complexes in their native environment (in situ). The ability to visualize macromolecules in situ is in particular advantageous for complex, membrane-associated processes, such as mitochondrial translation. Mitochondrial translation occurs almost exclusively associated with the inner mitochondrial membrane, giving rise to the mitochondrial DNA-encoded subunits of oxidative phosphorylation machinery. In cryo-ET, the 3D volume is reconstructed from a set of 2D projections of a frozen-hydrated specimen, which is sequentially tilted and imaged at different angles in a transmission electron microscope. In combination with subtomogram analysis, cryo-ET enables the structure determination of macromolecular complexes and their 3D organization. In this chapter, we summarize all steps required for structural characterization of mitochondrial ribosomes in situ, ranging from data acquisition to tomogram reconstruction and subtomogram analysis.


Assuntos
Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Mitocôndrias/metabolismo , Biossíntese de Proteínas/fisiologia , Células HEK293 , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Substâncias Macromoleculares/química , Software
3.
Nat Commun ; 12(1): 7176, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34887394

RESUMO

Mitochondria are the powerhouse of eukaryotic cells. They possess their own gene expression machineries where highly divergent and specialized ribosomes, named hereafter mitoribosomes, translate the few essential messenger RNAs still encoded by mitochondrial genomes. Here, we present a biochemical and structural characterization of the mitoribosome in the model green alga Chlamydomonas reinhardtii, as well as a functional study of some of its specific components. Single particle cryo-electron microscopy resolves how the Chlamydomonas mitoribosome is assembled from 13 rRNA fragments encoded by separate non-contiguous gene pieces. Additional proteins, mainly OPR, PPR and mTERF helical repeat proteins, are found in Chlamydomonas mitoribosome, revealing the structure of an OPR protein in complex with its RNA binding partner. Targeted amiRNA silencing indicates that these ribosomal proteins are required for mitoribosome integrity. Finally, we use cryo-electron tomography to show that Chlamydomonas mitoribosomes are attached to the inner mitochondrial membrane via two contact points mediated by Chlamydomonas-specific proteins. Our study expands our understanding of mitoribosome diversity and the various strategies these specialized molecular machines adopt for membrane tethering.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Mitocôndrias/metabolismo , RNA/metabolismo , Ribossomos/metabolismo , Chlamydomonas reinhardtii/química , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/ultraestrutura , Microscopia Crioeletrônica , Mitocôndrias/química , Mitocôndrias/genética , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais , Ribossomos Mitocondriais/química , Ribossomos Mitocondriais/metabolismo , Ribossomos Mitocondriais/ultraestrutura , RNA/química , RNA/genética , RNA/ultraestrutura , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/ultraestrutura , Ribossomos/química , Ribossomos/genética , Ribossomos/ultraestrutura
4.
Tissue Cell ; 57: 129-138, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30197222

RESUMO

Cryo-electron tomography (cryo-ET) enables the three-dimensional (3D) structural characterization of macromolecular complexes in their physiological environment. Thus, cryo-ET is uniquely suited to study the structural basis of biomolecular processes that are extremely difficult or even impossible to reconstitute using purified components. Translation of mitochondrial genes, which occurs in the secluded interior of mitochondria, falls into this category. Here, we describe the principles of cryo-ET in the context of mitochondrial translation and outline recent developments and challenges of the method. The 3D image of a frozen-hydrated biological sample is computed from its 2D projections, which are acquired using a transmission electron microscope. In conjunction with automated detection of different copies of the molecule of interest and averaging of the corresponding subtomograms, cryo-ET enables macromolecular structure determination in the native environment (i.e. in situ) at sub-nanometer resolution. The preservation of the native environment furthermore allows the extraction of contextual information about the molecules, including the location of specific molecules with respect to membranes, their relative positioning and the spatial organization with respect to other types of macromolecules. Recent preparative developments extend the field of application of cryo-ET from isolated organelles to cultured eukaryotic cells and even tissue, making the traditional borders between molecular and cellular structural biology disappear.


Assuntos
Microscopia Crioeletrônica/métodos , Tomografia com Microscopia Eletrônica/métodos , Imageamento Tridimensional/métodos , Mitocôndrias/ultraestrutura , Biossíntese de Proteínas/fisiologia , Animais , Humanos , Processamento de Imagem Assistida por Computador/métodos
5.
Structure ; 25(10): 1574-1581.e2, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28867615

RESUMO

Mitochondria maintain their own genome and its corresponding protein synthesis machine, the mitochondrial ribosome (mitoribosome). Mitoribosomes primarily synthesize highly hydrophobic proteins of the inner mitochondrial membrane. Recent studies revealed the complete structure of the isolated mammalian mitoribosome, but its mode of membrane association remained hypothetical. In this study, we used cryoelectron tomography to visualize human mitoribosomes in isolated mitochondria. The subtomogram average of the membrane-associated human mitoribosome reveals a single major contact site with the inner membrane, mediated by the mitochondria-specific protein mL45. A second rRNA-mediated contact site that is present in yeast is absent in humans, resulting in a more variable association of the human mitoribosome with the inner membrane. Despite extensive structural differences of mammalian and fungal mitoribosomal structure, the principal organization of peptide exit tunnel and the mL45 homolog remains invariant, presumably to align the mitoribosome with the membrane-embedded insertion machinery.


Assuntos
Mitocôndrias/ultraestrutura , Ribossomos Mitocondriais/química , Microscopia Crioeletrônica , Humanos , Mitocôndrias/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA