Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Chem Res Toxicol ; 33(9): 2261-2275, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32830476

RESUMO

Hepatotoxicity is a major reason for the withdrawal or discontinuation of drugs from clinical trials. Thus, better tools are needed to filter potential hepatotoxic drugs early in drug discovery. Our study demonstrates utilization of HCI phenotypes, chemical descriptors, and both combined (hybrid) descriptors to construct random forest classifiers (RFCs) for the prediction of hepatotoxicity. HCI data published by Broad Institute provided HCI phenotypes for about 30 000 samples in multiple replicates. Phenotypes belonging to 346 chemicals, which were tested in up to eight replicates, were chosen as a basis for our analysis. We then constructed individual RFC models for HCI phenotypes, chemical descriptors, and hybrid (chemical and HCI) descriptors. The model that was constructed using selective hybrid descriptors showed high predictive performance with 5-fold cross validation (CV) balanced accuracy (BA) at 0.71, whereas within the given applicability domain (AD), independent test set and external test set prediction BAs were equal to 0.61 and 0.60, respectively. The model constructed using chemical descriptors showed a similar predictive performance with a 5-fold CV BA equal to 0.66, a test set prediction BA within the AD equal to 0.56, and an external test set prediction BA within the AD equal to 0.50. In conclusion, the hybrid and chemical descriptor-based models presented here should be considered as a new tool for filtering hepatotoxic molecules during compound prioritization in drug discovery.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Fígado/efeitos dos fármacos , Animais , Humanos , Fenótipo
2.
Ecotoxicol Environ Saf ; 170: 691-698, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30580163

RESUMO

Perfluorooctanesulfonate (PFOS) is a well-known contaminant in the environment and it has shown to disrupt multiple biological pathways, particularly those related with lipid metabolism. In this study, we have studied the impact of in ovo exposure to PFOS on lipid metabolism in livers in developing chicken embryos using lipidomics for detailed characterization of the liver lipidome. We used an avian model (Gallus gallus domesticus) for in ovo treatment at two levels of PFOS. The lipid profile of the liver of the embryo was investigated by ultra-high performance liquid chromatography combined with quadrupole-time-of-flight mass spectrometry and by gas chromatography mass spectrometry. Over 170 lipids were identified, covering phospholipids, ceramides, di- and triacylglycerols, cholesterol esters and fatty acid composition of the lipids. The PFOS exposure caused dose dependent changes in the lipid levels, which included upregulation of specific phospholipids associated with the phosphatidylethanolamine N-methyltransferase (PEMT) pathway, triacylglycerols with low carbon number and double bond count as well as of lipotoxic ceramides and diacylglycerols. Our data suggest that at lower levels of exposure, mitochondrial fatty acid ß-oxidation is suppressed while the peroxisomal fatty acid ß -oxidation is increased. At higher doses, however, both ß -oxidation pathways are upregulated.


Assuntos
Ácidos Alcanossulfônicos/toxicidade , Fluorocarbonos/toxicidade , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Animais , Ceramidas/metabolismo , Embrião de Galinha , Galinhas , Diglicerídeos/metabolismo , Ácidos Graxos/metabolismo , Feminino , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Masculino , Mitocôndrias/metabolismo , Fosfatidiletanolamina N-Metiltransferase/metabolismo , Fosfolipídeos/metabolismo , Triglicerídeos/metabolismo
3.
Environ Int ; 190: 108820, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38906088

RESUMO

PFAS are ubiquitous industrial chemicals with known adverse health effects, particularly on the liver. The liver, being a vital metabolic organ, is susceptible to PFAS-induced metabolic dysregulation, leading to conditions such as hepatotoxicity and metabolic disturbances. In this study, we investigated the phenotypic and metabolic responses of PFAS exposure using two hepatocyte models, HepG2 (male cell line) and HepaRG (female cell line), aiming to define phenotypic alterations, and metabolic disturbances at the metabolite and pathway levels. The PFAS mixture composition was selected based on epidemiological data, covering a broad concentration spectrum observed in diverse human populations. Phenotypic profiling by Cell Painting assay disclosed predominant effects of PFAS exposure on mitochondrial structure and function in both cell models as well as effects on F-actin, Golgi apparatus, and plasma membrane-associated measures. We employed comprehensive metabolic characterization using liquid chromatography combined with high-resolution mass spectrometry (LC-HRMS). We observed dose-dependent changes in the metabolic profiles, particularly in lipid, steroid, amino acid and sugar and carbohydrate metabolism in both cells as well as in cell media, with HepaRG cell line showing a stronger metabolic response. In cells, most of the bile acids, acylcarnitines and free fatty acids showed downregulation, while medium-chain fatty acids and carnosine were upregulated, while the cell media showed different response especially in relation to the bile acids in HepaRG cell media. Importantly, we observed also nonmonotonic response for several phenotypic features and metabolites. On the pathway level, PFAS exposure was also associated with pathways indicating oxidative stress and inflammatory responses. Taken together, our findings on PFAS-induced phenotypic and metabolic disruptions in hepatocytes shed light on potential mechanisms contributing to the broader comprehension of PFAS-related health risks.

4.
Environ Int ; 188: 108736, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38759545

RESUMO

The presence of microplastics (MPs) is increasing at a dramatic rate globally, posing risks for exposure and subsequent potential adverse effects on human health. Apart from being physical objects, MP particles contain thousands of plastic-associated chemicals (i.e., monomers, chemical additives, and non-intentionally added substances) captured within the polymer matrix. These chemicals are often migrating from MPs and can be found in various environmental matrices and human food chains; increasing the risks for exposure and health effects. In addition to the physical and chemical attributes of MPs, plastic surfaces effectively bind exogenous chemicals, including environmental pollutants (e.g., heavy metals, persistent organic pollutants). Therefore, MPs can act as vectors of environmental pollution across air, drinking water, and food, further amplifying health risks posed by MP exposure. Critically, fragmentation of plastics in the environment increases the risk for interactions with cells, increases the presence of available surfaces to leach plastic-associated chemicals, and adsorb and transfer environmental pollutants. Hence, this review proposes the so-called triple exposure nexus approach to comprehensively map existing knowledge on interconnected health effects of MP particles, plastic-associated chemicals, and environmental pollutants. Based on the available data, there is a large knowledge gap in regard to the interactions and cumulative health effects of the triple exposure nexus. Each component of the triple nexus is known to induce genotoxicity, inflammation, and endocrine disruption, but knowledge about long-term and inter-individual health effects is lacking. Furthermore, MPs are not readily excreted from organisms after ingestion and they have been found accumulated in human blood, cardiac tissue, placenta, etc. Even though the number of studies on MPs-associated health impacts is increasing rapidly, this review underscores that there is a pressing necessity to achieve an integrated assessment of MPs' effects on human health in order to address existing and future knowledge gaps.


Assuntos
Exposição Ambiental , Poluentes Ambientais , Microplásticos , Plásticos , Humanos , Microplásticos/toxicidade , Microplásticos/análise , Poluentes Ambientais/análise , Plásticos/toxicidade , Poluição Ambiental
5.
J Hazard Mater ; 471: 134401, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38678714

RESUMO

Tire wear particles (TWP) stand out as a major contributor to microplastic pollution, yet their environmental impact remains inadequately understood. This study delves into the cocktail effects of TWP leachates, employing molecular, cellular, and organismal assessments on diverse biological models. Extracted in artificial seawater and analyzed for metals and organic compounds, TWP leachates revealed the presence of polyaromatic hydrocarbons and 4-tert-octylphenol. Exposure to TWP leachates (1.5 to 1000 mg peq L-1) inhibited algae growth and induced zebrafish embryotoxicity, pigment alterations, and behavioral changes. Cell painting uncovered pro-apoptotic changes, while mechanism-specific gene-reporter assays highlighted endocrine-disrupting potential, particularly antiandrogenic effects. Although heavy metals like zinc have been suggested as major players in TWP leachate toxicity, this study emphasizes water-leachable organic compounds as the primary causative agents of observed acute toxicity. The findings underscore the need to reduce TWP pollution in aquatic systems and enhance regulations governing highly toxic tire additives.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Poluentes Químicos da Água/toxicidade , Microplásticos/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Modelos Biológicos
6.
Environ Int ; 183: 108412, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38183898

RESUMO

Due to their exceptional properties and cost effectiveness, polyamides or nylons have emerged as widely used materials, revolutionizing diverse industries, including industrial 3D printing or additive manufacturing (AM). Powder-based AM technologies employ tonnes of polyamide microplastics to produce complex components every year. However, the lack of comprehensive toxicity assessment of particulate polyamides and polyamide-associated chemicals, especially in the light of the global microplastics crisis, calls for urgent action. This study investigated the physicochemical properties of polyamide-12 microplastics used in AM, and assessed a number of toxicity endpoints focusing on inflammation, immunometabolism, genotoxicity, aryl hydrocarbon receptor (AhR) activation, endocrine disruption, and cell morphology. Specifically, microplastics examination by means of field emission scanning electron microscopy revealed that work flow reuse of material created a fraction of smaller particles with an average size of 1-5 µm, a size range readily available for uptake by human cells. Moreover, chemical analysis by means of gas chromatography high-resolution mass spectrometry detected several polyamide-associated chemicals including starting material, plasticizer, thermal stabilizer/antioxidant, and migrating slip additive. Even if polyamide particles and chemicals did not induce an acute inflammatory response, repeated and prolonged exposure of human primary macrophages disclosed a steady increase in the levels of proinflammatory chemokine Interleukin-8 (IL-8/CXCL-8). Moreover, targeted metabolomics disclosed that polyamide particles modulated the kynurenine pathway and some of its key metabolites. The p53-responsive luciferase reporter gene assay showed that particles per se were able to activate p53, being indicative of a genotoxic stress. Polyamide-associated chemicals triggered moderate activation of AhR and elicited anti-androgenic activity. Finally, a high-throughput and non-targeted morphological profiling by Cell Painting assay outlined major sites of bioactivity of polyamide-associated chemicals and indicated putative mechanisms of toxicity in the cells. These findings reveal that the increasing use of polyamide microplastics may pose a potential health risk for the exposed individuals, and it merits more attention.


Assuntos
Nylons , Poluentes Químicos da Água , Humanos , Microplásticos/toxicidade , Plásticos/toxicidade , Proteína Supressora de Tumor p53 , Plastificantes , Poluentes Químicos da Água/análise
7.
Sci Total Environ ; 920: 170759, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38336065

RESUMO

Aquatic animals and consumers of aquatic animals are exposed to increasingly complex mixtures of known and as-yet-unknown chemicals with dioxin-like toxicities in the water cycle. Effect- and cell-based bioanalysis can cover known and yet unknown dioxin and dioxin-like compounds as well as complex mixtures thereof but need to be standardized and integrated into international guidelines for environmental testing. In an international laboratory testing (ILT) following ISO/CD 24295 as standard procedure for rat cell-based DR CALUX un-spiked and spiked extracts of drinking-, surface-, and wastewater were validated to generate precision data for the development of the full ISO-standard. We found acceptable repeatability and reproducibility ranges below 36 % by DR CALUX bioassay for the tested un-spiked and spiked water of different origins. The presence of 17 PCDD/Fs and 12 dioxin-like PCBs was also confirmed by congener-specific GC-HRMS analysis. We compared the sum of dioxin-like activity levels measured by DR CALUX bioassay (expressed in 2,3,7,8-TCDD Bioanalytical Equivalents, BEQ; ISO 23196, 2022) with the obtained GC-HRMS chemical analysis results converted to toxic equivalents (TEQ; van den Berg et al., 2013).


Assuntos
Dioxinas , Bifenilos Policlorados , Dibenzodioxinas Policloradas , Ratos , Animais , Dibenzodioxinas Policloradas/análise , Dioxinas/toxicidade , Dioxinas/análise , Águas Residuárias , Reprodutibilidade dos Testes , Dibenzofuranos/análise , Rios , Luciferases , Bifenilos Policlorados/análise , Bioensaio/métodos , Dibenzofuranos Policlorados/análise
8.
Front Immunol ; 14: 1178434, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37143682

RESUMO

Micro- and nanoplastics (MNPs) are emerging pollutants with scarcely investigated effects on human innate immunity. If they follow a similar course of action as other, more thoroughly investigated particulates, MNPs may penetrate epithelial barriers, potentially triggering a cascade of signaling events leading to cell damage and inflammation. Inflammasomes are intracellular multiprotein complexes and stimulus-induced sensors critical for mounting inflammatory responses upon recognition of pathogen- or damage-associated molecular patterns. Among these, the NLRP3 inflammasome is the most studied in terms of activation via particulates. However, studies delineating the ability of MNPs to affect NLRP3 inflammasome activation are still rare. In this review, we address the issue of MNPs source and fate, highlight the main concepts of inflammasome activation via particulates, and explore recent advances in using inflammasome activation for assessment of MNP immunotoxicity. We also discuss the impact of co-exposure and MNP complex chemistry in potential inflammasome activation. Development of robust biological sensors is crucial in order to maximize global efforts to effectively address and mitigate risks that MNPs pose for human health.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Microplásticos , Imunidade Inata , Inflamação
9.
Environ Int ; 172: 107776, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36731188

RESUMO

Epigenetic pathways are essential in different biological processes and in phenotype-environment interactions in response to different stressors and they can induce phenotypic plasticity. They encompass several processes that are mitotically and, in some cases, meiotically heritable, so they can be transferred to subsequent generations via the germline. Transgenerational Epigenetic Inheritance (TEI) describes the phenomenon that phenotypic traits, such as changes in fertility, metabolic function, or behavior, induced by environmental factors (e.g., parental care, pathogens, pollutants, climate change), can be transferred to offspring generations via epigenetic mechanisms. Investigations on TEI contribute to deciphering the role of epigenetic mechanisms in adaptation, adversity, and evolution. However, molecular mechanisms underlying the transmission of epigenetic changes between generations, and the downstream chain of events leading to persistent phenotypic changes, remain unclear. Therefore, inter-, (transmission of information between parental and offspring generation via direct exposure) and transgenerational (transmission of information through several generations with disappearance of the triggering factor) consequences of epigenetic modifications remain major issues in the field of modern biology. In this article, we review and describe the major gaps and issues still encountered in the TEI field: the general challenges faced in epigenetic research; deciphering the key epigenetic mechanisms in inheritance processes; identifying the relevant drivers for TEI and implement a collaborative and multi-disciplinary approach to study TEI. Finally, we provide suggestions on how to overcome these challenges and ultimately be able to identify the specific contribution of epigenetics in transgenerational inheritance and use the correct tools for environmental science investigation and biomarkers identification.


Assuntos
Epigênese Genética , Células Germinativas , Células Germinativas/metabolismo , Fenótipo , Adaptação Fisiológica , Padrões de Herança , Metilação de DNA
10.
Cells ; 12(2)2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36672217

RESUMO

Additive manufacturing (AM) or industrial 3D printing uses cutting-edge technologies and materials to produce a variety of complex products. However, the effects of the unintentionally emitted AM (nano)particles (AMPs) on human cells following inhalation, require further investigations. The physicochemical characterization of the AMPs, extracted from the filter of a Laser Powder Bed Fusion (L-PBF) 3D printer of iron-based materials, disclosed their complexity, in terms of size, shape, and chemistry. Cell Painting, a high-content screening (HCS) assay, was used to detect the subtle morphological changes elicited by the AMPs at the single cell resolution. The profiling of the cell morphological phenotypes, disclosed prominent concentration-dependent effects on the cytoskeleton, mitochondria, and the membranous structures of the cell. Furthermore, lipidomics confirmed that the AMPs induced the extensive membrane remodeling in the lung epithelial and macrophage co-culture cell model. To further elucidate the biological mechanisms of action, the targeted metabolomics unveiled several inflammation-related metabolites regulating the cell response to the AMP exposure. Overall, the AMP exposure led to the internalization, oxidative stress, cytoskeleton disruption, mitochondrial activation, membrane remodeling, and metabolic reprogramming of the lung epithelial cells and macrophages. We propose the approach of integrating Cell Painting with metabolomics and lipidomics, as an advanced nanosafety methodology, increasing the ability to capture the cellular and molecular phenotypes and the relevant biological mechanisms to the (nano)particle exposure.


Assuntos
Lipidômica , Metabolômica , Humanos , Pulmão/metabolismo , Células Epiteliais , Fenótipo
11.
Chemosphere ; 298: 134362, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35307388

RESUMO

Tire granulates recovered from end-of-life tires contain a complex mixture of chemicals, amongst them polyaromatic compounds (PACs), of which many are recognized to be toxic and persistent in the environment. Only a few of these PACs are regularly monitored. In this study a combined approach of chemical analysis and a battery of CALUX® in vitro bioassays was used to determine PAC concentrations and estrogenic, (anti)-androgenic and aryl hydrocarbon receptor (AhR) activities in tire granulates. Tire granulates from a recycling company was analyzed for PAHs, alkyl-PAHs, oxy-PAHs and heterocyclic PACs (NSO-PACs), in total 85 PACs. The concentrations of PACs were between 42 and 144 mg/kg, with major contribution from PAHs (74-88%) followed by alkyl-PAHs (6.6-20%) and NSO-PACs (1.8-7.0%). The sum of eight priority PAHs were between 2.3 and 8.6 mg/kg, contributing with 4.7-8.2% of ∑PACs. Bioassay analysis showed presence of AhR agonists, estrogen receptor (ERα) agonists, and androgen receptor (AR) antagonists in the tire granulate samples. Only 0.8-2.4% of AhR-mediated activities could be explained by the chemical analysis. Benzo[k+j]fluoranthenes, benzo[b]fluoranthene, indeno[1,2,3-cd]pyrene, 2-methylchrysene, and 3-methylchrysene were the major contributors to the AhR-mediated activities. The high contribution (98-99%) of unknown bioactive compounds to the bioassay effects in this study raises concerns and urges for further investigations of toxicants identification and source apportionment.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Receptores de Hidrocarboneto Arílico , Bioensaio , Cromatografia Gasosa , Hidrocarbonetos Policíclicos Aromáticos/análise , Receptores de Hidrocarboneto Arílico/agonistas
12.
Aquat Toxicol ; 248: 106175, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35523058

RESUMO

Risk assessment of chemicals is still primarily focusing on single compound evaluation, even if environmental contamination consists of a mixture of pollutants. The concentration addition (CA) and independent action (IA) models have been developed to predict mixture toxicity. Both models assume no interaction between the components, resulting in an additive mixture effect. In the present study, the embryo toxicity test (OECD TG no. 236) with zebrafish embryos (Danio rerio) was performed to investigate whether the toxicity caused by binary, ternary, and quaternary mixtures of organic (Benzo[a]pyrene, perfluorooctanesulfonate, and 3,3´,4,4´,5-pentachlorobiphenyl 126) and inorganic (arsenate) pollutants can be predicted by CA and IA. The acute toxicity and sub-lethal alterations such as lack of blood circulation were investigated. The models estimated the mixture toxicity well and most of the mixtures were additive. However, the binary mixture of PFOS and PCB126 caused a synergistic effect, with almost a ten-fold difference between the observed and predicted LC50-value. For most of the mixtures, the CA model was better in predicting the mixture toxicity than the IA model, which was not expected due to the chemicals' different modes of action. In addition, some of the mixtures caused sub-lethal effects not observed in the single compound toxicity tests. The mixture of PFOS and BaP caused a division of the yolk and imbalance was caused by the combination of PFOS and As and the ternary mixture of PFOS, As, and BaP. Interestingly, PFOS was part of all three mixtures causing the mixture specific sub-lethal effects. In conclusion, the present study shows that CA and IA are mostly resulting in good estimations of the risks that mixtures with few components are posing. However, for a more reliable assessment and a better understanding of mixture toxicity, further investigations are required to study the underlying mechanisms.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Animais , Poluentes Ambientais/toxicidade , Dose Letal Mediana , Testes de Toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra
13.
Environ Pollut ; 312: 120014, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36007793

RESUMO

Polycyclic aromatic compounds (PACs) are organic compounds commonly found in contaminated soil. Previous studies have shown the removal of polycyclic aromatic hydrocarbons (PAHs) in creosote-contaminated soils during steam enhanced extraction (SEE). However, less is known about the removal of alkyl-PAHs and heterocyclic compounds, such as azaarenes, and oxygen- and sulfur-heterocyclic PACs (OPACs and PASHs, respectively). Further, the impact of SEE on the freely dissolved concentration of PACs in soil as well as the soil bioactivity pre- and post-SEE have yet to be addressed. To fulfil these research gaps, chemical and bioanalytical analysis of a creosote-contaminated soil, collected from a U.S. Superfund site, pre- and post-SEE were performed. The decrease of 64 PACs (5-100%) and increase in the concentrations of nine oxygenated-PAHs (OPAHs) (150%) during SEE, some of which are known to be toxic and can potentially contaminate ground water, were observed. The freely dissolved concentrations of PACs in soil were assessed using polyoxymethylene (POM) strips and the concentrations of 66 PACs decreased post-SEE (1-100%). Three in vitro reporter gene bioassays (DR-CALUX®, ERα-CALUX® and anti-AR CALUX®) were used to measure soil bioactivities pre- and post-SEE and all reporter gene bioassays measured soil bioactivity decreases post-SEE. Mass defect suspect screening tentatively identified 27 unique isomers of azaarenes and OPAC in the soil. As a remediation technique, SEE was found to remove alkyl-PAHs and heterocyclic PACs, reduce the concentrations of freely dissolved PACs, and decrease soil bioactivities.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Compostos Policíclicos , Poluentes do Solo , Bioensaio , Creosoto/análise , Receptor alfa de Estrogênio , Oxigênio/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Compostos Policíclicos/análise , Solo/química , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Vapor/análise , Enxofre
14.
Front Toxicol ; 4: 836447, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35548681

RESUMO

Additive manufacturing (AM) or industrial three-dimensional (3D) printing drives a new spectrum of design and production possibilities; pushing the boundaries both in the application by production of sophisticated products as well as the development of next-generation materials. AM technologies apply a diversity of feedstocks, including plastic, metallic, and ceramic particle powders with distinct size, shape, and surface chemistry. In addition, powders are often reused, which may change the particles' physicochemical properties and by that alter their toxic potential. The AM production technology commonly relies on a laser or electron beam to selectively melt or sinter particle powders. Large energy input on feedstock powders generates several byproducts, including varying amounts of virgin microparticles, nanoparticles, spatter, and volatile chemicals that are emitted in the working environment; throughout the production and processing phases. The micro and nanoscale size may enable particles to interact with and to cross biological barriers, which could, in turn, give rise to unexpected adverse outcomes, including inflammation, oxidative stress, activation of signaling pathways, genotoxicity, and carcinogenicity. Another important aspect of AM-associated risks is emission/leakage of mono- and oligomers due to polymer breakdown and high temperature transformation of chemicals from polymeric particles, both during production, use, and in vivo, including in target cells. These chemicals are potential inducers of direct toxicity, genotoxicity, and endocrine disruption. Nevertheless, understanding whether AM particle powders and their byproducts may exert adverse effects in humans is largely lacking and urges comprehensive safety assessment across the entire AM lifecycle-spanning from virgin and reused to airborne particles. Therefore, this review will detail: 1) brief overview of the AM feedstock powders, impact of reuse on particle physicochemical properties, main exposure pathways and protective measures in AM industry, 2) role of particle biological identity and key toxicological endpoints in the particle safety assessment, and 3) next-generation toxicology approaches in nanosafety for safety assessment in AM. Altogether, the proposed testing approach will enable a deeper understanding of existing and emerging particle and chemical safety challenges and provide a strategy for the development of cutting-edge methodologies for hazard identification and risk assessment in the AM industry.

15.
Mar Pollut Bull ; 153: 111019, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32275565

RESUMO

Microplastics were sampled in open surface waters by using a manta trawl and an in-situ filtering pump. A total of 24 trawl samples and 11 pump samples were taken at 12 locations around Sweden. Overall, the concentration of microplastic particles was higher in pump samples compared to trawl samples. The median microplastic particle concentration was 0.04 particles per m-3 for manta trawl samples and 0.10 particles per m-3 in pump samples taken with a mesh size of 0.3 mm. The highest concentrations were recorded on the west coast of Sweden. Fibers were found in all samples and were also more frequent in the pump samples. Even higher concentrations of fibers and particles were found on the 0.05 mm pump filters. Using near-infrared hyperspectral imaging the majority of the particles were identified as polyethylene followed by polypropylene.


Assuntos
Monitoramento Ambiental , Microplásticos , Poluentes Químicos da Água , Plásticos , Suécia
16.
Environ Sci Pollut Res Int ; 16(5): 521-30, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19296140

RESUMO

BACKGROUND, AIM, AND SCOPE: Degradation of the 16 US EPA priority PAHs in soil subjected to bioremediation is often achieved. However, the PAH loss is not always followed by a reduction in soil toxicity. For instance, bioanalytical testing of such soil using the chemical-activated luciferase gene expression (CALUX) assay, measuring the combined effect of all Ah receptor (AhR) activating compounds, occasionally indicates that the loss of PAHs does not correlate with the loss of Ah receptor-active compounds in the soil. In addition, standard PAH analysis does not address the issue of total toxicant bioavailability in bioremediated soil. MATERIALS AND METHODS: To address these questions, we have used the CALUX AhR agonist bioassay and the Comet genotoxicity bioassay with RTL-W1 cells to evaluate the toxic potential of different extracts from a PAH-contaminated soil undergoing large-scale bioremediation. The extracts were also chemically analyzed for PAH16 and PCDD/PCDF. Soil sampled on five occasions between day 0 and day 274 of biological treatment was shaken with n-butanol with vortex mixing at room temperature to determine the bioavailable fraction of contaminants. To establish total concentrations, parts of the same samples were extracted using an accelerated solvent extractor (ASE) with toluene at 100 degrees C. The extracts were tested as inducers of AhR-dependent luciferase activity in the CALUX assay and for DNA breakage potential in the Comet bioassay. RESULTS: The chemical analysis of the toluene extracts indicated slow degradation rates and the CALUX assay indicated high levels of AhR agonists in the same extracts. Compared to day 0, the bioavailable fractions showed no decrease in AhR agonist activity during the treatment but rather an up-going trend, which was supported by increasing levels of PAHs and an increased effect in the Comet bioassay after 274 days. The bio-TEQs calculated using the CALUX assay were higher than the TEQs calculated from chemical analysis in both extracts, indicating that there are additional toxic PAHs in both extracts that are not included in the chemically derived TEQ. DISCUSSION: The response in the CALUX and the Comet bioassays as well as the chemical analysis indicate that the soil might be more toxic to organisms living in soil after 274 days of treatment than in the untreated soil, due to the release of previously sorbed PAHs and possibly also metabolic formation of novel toxicants. CONCLUSIONS: Our results put focus on the issue of slow degradation rates and bioavailability of PAHs during large-scale bioremediation treatments. The release of sorbed PAHs at the investigated PAH-contaminated site seemed to be faster than the degradation rate, which demonstrates the importance of considering the bioavailable fraction of contaminants during a bioremediation process. RECOMMENDATIONS AND PERSPECTIVES: It has to be ensured that soft remediation methods like biodegradation or the natural remediation approach do not result in the mobilization of toxic compounds including more mobile degradation products. For PAH-contaminated sites this cannot be assured merely by monitoring the 16 target PAHs. The combined use of a battery of biotests for different types of PAH effects such as the CALUX and the Comet assay together with bioavailability extraction methods may be a useful screening tool of bioremediation processes of PAH-contaminated soil and contribute to a more accurate risk assessment. If the bioremediation causes a release of bound PAHs that are left undegraded in an easily extracted fraction, the soil may be more toxic to organisms living in the soil as a result of the treatment. A prolonged treatment time may be one way to reduce the risk of remaining mobile PAHs. In critical cases, the remediation concept might have to be changed to ex situ remediation methods.


Assuntos
Mutagênicos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/química , Receptores de Hidrocarboneto Arílico/agonistas , Poluentes do Solo/química , Animais , Biodegradação Ambiental , Bioensaio , Disponibilidade Biológica , Linhagem Celular , Ensaio Cometa , Oncorhynchus mykiss , Ratos , Solo/análise
17.
Environ Sci Pollut Res Int ; 26(9): 9079-9088, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30715715

RESUMO

Plastic is able to sorb environmental pollutants from ambient water and might act as a vector for these pollutants to marine organisms. The potential toxicological effects of plastic-sorbed pollutants in marine organisms have not been thoroughly assessed. In this study, organic extracts from four types of plastic deployed for 9 or 12 months in San Diego Bay, California, were examined for their potential to activate the aryl hydrocarbon receptor (AhR) pathway by use of the H4IIE-luc assay. Polycyclic aromatic hydrocarbons (PAH), including the 16 priority PAHs, were quantified. The AhR-mediated potency in the deployed plastic samples, calculated as bio-TEQ values, ranged from 2.7 pg/g in polyethylene terephthalate (PET) to 277 pg/g in low-density polyethylene (LDPE). Concentrations of the sum of 24 PAHs in the deployed samples ranged from 4.6 to 1068 ng/g. By use of relative potency factors (REP), a potency balance between the biological effect (bio-TEQs) and the targeted PAHs (chem-TEQs) was calculated to 24-170%. The study reports, for the first time, in vitro AhR-mediated potencies for different deployed plastics, of which LDPE elicited the greatest concentration of bio-TEQs followed by polypropylene (PP), PET, and polyvinylchloride (PVC).


Assuntos
Poluentes Ambientais/química , Plásticos/química , Hidrocarbonetos Policíclicos Aromáticos/química , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Bioensaio , California , Poluentes Ambientais/metabolismo , Genes Reporter , Plásticos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Polímeros/química , Ratos , Receptores de Hidrocarboneto Arílico/genética
18.
Anal Bioanal Chem ; 390(8): 2009-19, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17938895

RESUMO

This study is a consequence of a distinct fish decline in the Danube river since the beginning of the 1990s. In contrast to the decline of fish population, former studies have repeatedly documented that the water quality along the Danube river is improving. However, the conclusion of a pilot study in 2002 was that a high hazard potential is associated with local sediments. The present study documents that sediment samples from the Danube river showed comparatively high aryl hydrocarbon receptor mediated activity in biotests, using the cell lines GPC.2D.Luc, H4IIE (DR-CALUX) and RTL-W1. The combination of chemical analysis, fractionation techniques and different in vitro tests revealed that priority pollutants could not explain the main induction, even though the concentrations of priority polycyclic aromatic hydrocarbons (PAHs) were very high (maximum in the tributary Schwarzach, sum of 16 EPA PAHs 26 mug/g). In conclusion, this investigation shows that nonpriority pollutants mainly mediate the high induction rates. Nevertheless, owing to the effects of PAHs towards fish and the connection between dioxin-like activity and carcinogenicity, the link between contamination and the fish population decline cannot be ruled out.


Assuntos
Sedimentos Geológicos/química , Hidrocarbonetos Policíclicos Aromáticos/análise , Receptores de Hidrocarboneto Arílico/agonistas , Poluentes Químicos da Água/química , Animais , Benzofuranos/análise , Bioensaio/métodos , Linhagem Celular , Citocromo P-450 CYP1A1/efeitos dos fármacos , Dibenzofuranos Policlorados , Indução Enzimática/efeitos dos fármacos , Alemanha , Cobaias , Oncorhynchus mykiss , Bifenilos Policlorados/análise , Dibenzodioxinas Policloradas/análise , Ratos , Reprodutibilidade dos Testes , Rios
19.
Environ Int ; 34(8): 1176-84, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18571727

RESUMO

Sediment samples from the upper Danube River in Germany have previously been characterized as ecotoxicologically hazardous and contaminants in these sediments may contribute to the observed decline of fish populations in this river section. For the investigation of sediment toxicity there is a need for development, standardization and implementation of in vivo test systems using vertebrates. Therefore, the main objective of this study was to apply and evaluate a recently established fish gill EROD assay as a biomarker in sediment toxicity assessment by using extracts of well characterised sediment samples from the upper Danube River. This to our knowledge is the first application of this novel assay to sediment extracts. Sediments from four different sites along the upper Danube River were Soxhlet-extracted with acetone and dissolved in DMSO. Three-spined sticklebacks (Gasterosteus aculeatus L.) were exposed for 48 h to various concentrations of the extracts, to the positive control beta-naphthoflavone or to the solvent. Measurements of EROD activity in gill filaments and liver microsomes followed the exposure. Concentration-dependent induction of EROD in both gill and liver was found for all sediment extracts. The highest EROD-inducing potency was determined for extracts of sediments from the sites "Opfinger See" and "Sigmaringen" and the EROD activities in gill and liver correlated well. The results from the gill and liver assays were in accordance with in vitro results of previous investigations. The EROD activities measured in the present study corresponded with the concentrations of PAHs, PCBs and PCDD/Fs in the sediment samples derived in a previous study. The sticklebacks in this study were in the reproductive phase and a stronger EROD induction was obtained in the females than in the males. Implementation of the EROD assay in testing of sediment extracts gave highly reliable results which make this assay an ecotoxicologically relevant method for assessment of contamination with Ah receptor agonists in sediments.


Assuntos
Bioensaio/métodos , Citocromo P-450 CYP1A1/biossíntese , Dioxinas/análise , Sedimentos Geológicos/química , Brânquias/efeitos dos fármacos , Fígado/efeitos dos fármacos , Poluentes Químicos da Água/análise , Animais , Dioxinas/farmacologia , Indução Enzimática , Feminino , Peixes , Brânquias/enzimologia , Fígado/enzimologia , Masculino
20.
Environ Sci Pollut Res Int ; 15(7): 536-53, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18936997

RESUMO

BACKGROUND, AIM, AND SCOPE: As a consequence of flood events, runoff and remobilized sediments may cause an increase of ecotoxicologically relevant effects from contaminant reservoirs. Aquatic and terrestrial organisms as well as cattle and areas of settlement are exposed to dislocated contaminants during and after flood events. In this study, the impacts of two flood events triggered by intense rain at the rivers Neckar and Rhine (Southern Germany) were studied. Effects in correlation to flood flow were assessed at the river Neckar using samples collected at frequent intervals. River Rhine suspended particulate matter (SPM) was sampled over a longer period at normal flow and during a flood event. Three cell lines (H4L1.1c4, GPC.2D.Luc, RTL-W1) were used to compare Ah receptor agonist activity in different biotest systems. Multilayer fractionation was performed to identify causative compounds, focusing on persistent organic contaminants. MATERIALS AND METHODS: Native water and SPM of flood events were collected at the river Neckar and at the monitoring station (Rheinguetestation, Worms, Germany) of the river Rhine. Water samples were XAD-extracted. SPM were freeze-dried and Soxhlet-extracted using acetone and finally dissolved in dimethyl sulfoxide. Resulting crude extracts were analyzed for cytotoxicity with the neutral red assay. Aryl hydrocarbon receptor (AhR) agonist activity was measured in a set of biological test systems (DR-CALUX, GPC.2D, and ethoxyresorufin-O-deethylase (EROD) assay) and different cell lines. In addition, crude extracts were fractionated using a combined method of multilayer (sequence of acidified silica layers) and carbon fractionation. Fractions from the multilayer fractionation contained persistent organic compounds (polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), polychlorinated biphenyls (PCBs), and some polycyclic aromatic hydrocarbon (PAHs)); fractions from the carbon fractionation were separated into a PCDD/F and a PCB fraction. Dioxin-like activity of multilayer and carbon fractions was determined in the EROD assay and expressed as biological toxicity equivalency concentrations of 2,3,7,8-tetrachlorodibenzo-p-dioxin (bio-TEQs). The calculation of chemical equivalency concentrations (chem-TEQs) and comparison to bio-TEQ values allowed the determination of the contribution of the analyzed persistent compounds to the total biological effects measured. RESULTS: Soluble compounds in native and extracted water samples resulted in no or minor activity in the toxicity tests, respectively. Filter residues of native water caused increased AhR-mediated activity at the peak of the flood. Activities of SPM of the river Neckar correlated well with the flow rate indicating a flood-dependent increase of toxicity culminating at the peak of flow. River Rhine SPM showed a decrease of activity regarding an SPM sample of the flood event compared to a long-term sample. Excellent correlations with AhR agonistic activity were determined for DR-CALUX and EROD assay, while the GPC.2D assay did not correlate with both other biotests. The activity of persistent dioxin-like acting compounds in multilayer and carbon fractionated PCDD/F and PCB fractions was low if compared to corresponding crude extracts. The congener pattern of PCDD/F revealed that the contaminations mainly originated from products and productions of the chlorine and organochlorine industries. DISCUSSION: Native and extracted water samples could be shown to contain little or no cytotoxic or AhR agonistic compounds. In contrast, particle-bound compounds were shown to be the relevant effect-causing fraction, as indicated by the activities of filter residues of native water and SPM. Compounds other than fractionated persistent PCBs and PCDD/Fs were more relevant to explain AhR-mediated activities of crude flood SPM at both rivers assessed. Biologically detected activities could at least in part be traced back to chemically analyzed and quantified compounds. CONCLUSIONS: The calculation of the portion of persistent PCBs and PCDD/Fs in multilayer fractions causing the high inductions in the EROD assay in combination with chemical analysis provides a suitable tool to assess dioxin-like activity of persistent compounds in SPM sampled over the course of flood events. Depending on the catchment area and annual course of flood events, end points may either indicate an increase or a decrease of activity. In order to determine the ecological hazard potential of mobilized contaminants during flood events, the focus should be set on particle-bound pollutants. Furthermore, PCDD/Fs and PCBs, commonly expected to be the most relevant pollutants in river systems, could be shown to contribute only to a minor portion of the overall AhR-mediated activity. However, they might be most relevant for human exposure when considering persistence and bioaccumulation-biomagnification in the food chain. RECOMMENDATIONS AND PERSPECTIVES: As a consequence of climate change, flood events will increase in frequency and intensity at least in some regions such as Central Europe. Thus, it is crucial to identify the potential hazard of (re-)mobilized contaminants from reservoirs dislocated via floods and threatening especially aquatic organisms and cattle grazing in flood plains. Since other less persistent compounds seem to be more relevant to explain AhR-mediated activities in flood SPM, nonconventional PAHs and more polar compounds also need to be considered for risk assessment. Effect-directed analysis using broad-range fractionation methods taking into account compounds from polar to nonpolar should be applied for identification of pollutants causing biological effects, thus integrating biological and chemical parameters.


Assuntos
Dioxinas/toxicidade , Poluentes Ambientais/análise , Inundações , Material Particulado/toxicidade , Receptores de Hidrocarboneto Arílico/agonistas , Rios , Carbono , Clima , Citocromo P-450 CYP1A1/metabolismo , Dioxinas/análise , Água Doce/análise , Sedimentos Geológicos , Alemanha , Concentração de Íons de Hidrogênio , Material Particulado/análise , Material Particulado/isolamento & purificação , Dibenzodioxinas Policloradas/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA