Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Biol Chem ; 285(52): 41087-99, 2010 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-20947497

RESUMO

The 49-residue functional upstream domain (FUD) of Streptococcus pyogenes F1 adhesin interacts with fibronectin (FN) in a heretofore unknown manner that prevents assembly of a FN matrix. Biotinylated FUD (b-FUD) bound to adsorbed FN or its recombinant N-terminal 70-kDa fibrin- and gelatin-binding fragment (70K). Binding was blocked by FN or 70K, but not by fibrin- or gelatin-binding subfragments of 70K. Isothermal titration calorimetry showed that FUD binds with K(d) values of 5.2 and 59 nM to soluble 70K and FN, respectively. We tested sets of FUD mutants and epitope-mapped monoclonal antibodies (mAbs) for ability to compete with b-FUD for binding to FN or to block FN assembly by cultured fibroblasts. Deletions or alanine substitutions throughout FUD caused loss of both activities. mAb 4D1 to the (2)FNI module had little effect, whereas mAb 7D5 to the (4)FNI module in the fibrin-binding region, 5C3 to the (9)FNI module in the gelatin-binding region, or L8 to the G-strand of (1)FNIII module adjacent to (9)FNI caused loss of binding of b-FUD to FN and decreased FN assembly. Conversely, FUD blocked binding of 7D5, 5C3, or L8, but not of 4D1, to FN. Circular dichroism indicated that FUD binds to 70K by ß-strand addition, a possibility supported by modeling based on crystal structures of peptides bound to (2)FNI-(5)FNI of the fibrin-binding domain and (8)FNI-(9)FNI of the gelatin-binding domain. Thus, the interaction likely involves an extensive anti-parallel ß-zipper in which FUD interacts with the E-strands of (2)FNI-(5)FNI and (8)FNI-(9)FNI.


Assuntos
Adesinas Bacterianas/química , Fibronectinas/química , Streptococcus pyogenes/química , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Anticorpos Monoclonais/química , Sítios de Ligação , Epitopos/química , Fibronectinas/genética , Fibronectinas/metabolismo , Humanos , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Streptococcus pyogenes/genética , Streptococcus pyogenes/metabolismo
2.
Anal Chim Acta ; 980: 41-49, 2017 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-28622802

RESUMO

Forensic DNA analysis requires several steps, including DNA extraction, PCR amplification, and separation of PCR fragments. Intuitively, there are numerous situations where it would be beneficial to speed up the overall DNA analysis process; in this work, we focus on the most time-consuming component in the analysis pipeline, namely the polymerase chain reaction (PCR). Primers were specially designed to target 10 human genomic loci, all yielding amplicons shorter than 350 bases, for ease of downstream integration with on-board microchip electrophoresis. Primer concentrations were adjusted specifically for microdevice amplification, resulting in well-balanced short tandem repeat (STR) profiles. Furthermore, studies were performed to push the limits of the DNA polymerase to achieve rapid, multiplexed PCR on various substrates, including transparent and black polyethylene terephthalate (Pe), and with two distinct adhesives, toner and heat sensitive adhesive (HSA). Rapid STR-based multiplexed PCR amplification is demonstrated in 15 min on a Pe microdevice using a custom-built system for fluid flow control and thermocycling for the full 10-plex, and in 10 min for a smaller multiplex consisting of six core CODIS loci plus Amelogenin with amplicons shorter than 200bp. Lastly, preliminary studies indicate the capability of this PCR microdevice platform to be integrated with both upstream DNA extraction, and downstream microchip electrophoresis. This, coupled to the use of reagents that are compatible with lyophilization (lyo-compatible) for PCR, represents the potential for a fully integrated rotationally-driven microdevice for complete forensic DNA analysis.


Assuntos
Eletroforese em Microchip , Genética Forense , Repetições de Microssatélites , Técnicas de Amplificação de Ácido Nucleico , DNA , Humanos , Reação em Cadeia da Polimerase
3.
Forensic Sci Int Genet ; 21: 134-44, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26774099

RESUMO

The PowerPlex(®) Fusion 6C System is a 27-locus, six-dye, multiplex that includes all markers in the expanded CODIS core loci and increases overlap with STR database standards throughout the world. Additionally, it contains two, rapidly mutating, Y-STRs and is capable of both casework and database workflows, including direct amplification. A multi-laboratory developmental validation study was performed on the PowerPlex(®) Fusion 6C System. Here, we report the results of that study which followed SWGDAM guidelines and includes data for: species specificity, sensitivity, stability, precision, reproducibility and repeatability, case-type samples, concordance, stutter, DNA mixtures, and PCR-based procedures. Where appropriate we report data from both extracted DNA samples and direct amplification samples from various substrates and collection devices. Samples from all studies were separated on both Applied Biosystems 3500 series and 6-dye capable 3130 series Genetic Analyzers and data is reported for each. Together, the data validate the design and demonstrate the performance of the PowerPlex(®) Fusion 6C System.


Assuntos
Impressões Digitais de DNA/instrumentação , Ciências Forenses/instrumentação , Animais , Cromossomos Humanos Y , DNA/análise , DNA/genética , Impressões Digitais de DNA/métodos , Impressões Digitais de DNA/normas , Ciências Forenses/métodos , Ciências Forenses/normas , Humanos , Repetições de Microssatélites/genética , Reação em Cadeia da Polimerase/instrumentação , Reação em Cadeia da Polimerase/métodos , Reprodutibilidade dos Testes , Especificidade da Espécie
4.
Biophys Chem ; 112(2-3): 201-7, 2004 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-15572249

RESUMO

Fibronectin (Fn), discovered by Harvard's Plasma Protein Program as plasma "cold-insoluble globulin" in the 1940s, has attracted much interest over the past three decades. One of the most interesting features of Fn is its ability to change shape in response to various environmental conditions and interactions with other substances found in the extra-cellular space. Here we examine the potential of the functional upstream domain (FUD) of Streptococcus pyogenes protein F1 to bring about changes in structure of Fn. In particular, we investigate the accessibility of Fn's 10th type III module that contains the integrin binding RGD motif. By use of monoclonal antibodies in a competitive ELISA assay, we found that FUD interacts with the amino-terminal type I modules of Fn to unveil the cell-binding region of Fn. This conformational change was achieved at sub-equimolar ratios of FUD/Fn monomer. We discuss the functional relevance of the interaction for both Fn and S. pyogenes and correlate the results with a conformational model of Fn that arose out of a collaboration between our laboratory and that of John Ferry.


Assuntos
Adesinas Bacterianas/farmacologia , Fibronectinas/química , Adesinas Bacterianas/química , Sítios de Ligação , Ligação Competitiva , Ensaio de Imunoadsorção Enzimática , Fibronectinas/efeitos dos fármacos , Humanos , Estrutura Terciária de Proteína , Streptococcus pyogenes
5.
Forensic Sci Int Genet ; 9: 169-78, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24528595

RESUMO

The PowerPlex(®) 21 System is a STR multiplex that has been optimized for casework samples while still being capable of database workflows including direct amplification. The loci included in the multiplex offer increasing overlap with core loci used in different countries and regions throughout the world. The PowerPlex(®) 21 System contains D1S1656, D2S1338, D3S1358, D5S818, D6S1043, D7S820, D8S1179, D12S391, D13S317, D16S539, D18S51, D19S433, D21S11, Amelogenin, CSF1PO, FGA, Penta D, Penta E, TH01, TPOX, and vWA. These loci represent all 13 core CODIS loci in addition to loci commonly used in Asia and Europe. A developmental validation study was completed to document performance capabilities and limitations of the PowerPlex(®) 21 System. Data from this validation work served as the basis for the following conclusions: genotyping of single-source samples was reliable across a range of template DNA concentrations with >95% alleles called at 50 pg. Direct amplification of samples from FTA(®) storage cards was successfully performed using the reagents provided with the system and modified cycling protocols provided in the technical manual. Mixture analysis showed that over 95% of minor alleles were detected at 1:9 ratios. Reaction conditions including volume and annealing temperature as well as the concentrations of primers, DNA polymerase, magnesium, and Master Mix were shown to be optimal and able to withstand moderate variations without affecting system performance. Reproducible results were generated by different users at different sites. Finally, concordance studies showed consistent results when comparing the PowerPlex(®) 21 System with other commercially available STR-genotyping systems.


Assuntos
Impressões Digitais de DNA/métodos , DNA/genética , Repetições de Microssatélites , Reação em Cadeia da Polimerase Multiplex/instrumentação , Animais , Candida albicans/genética , Gatos/genética , Bovinos/genética , Galinhas/genética , Cervos/genética , Cães/genética , Eletroforese Capilar , Corantes Fluorescentes , Marcadores Genéticos , Bactérias Gram-Negativas/genética , Bactérias Gram-Positivas/genética , Cavalos/genética , Humanos , Camundongos/genética , Coelhos/genética , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/genética , Especificidade da Espécie , Suínos/genética
6.
Forensic Sci Int Genet ; 12: 69-76, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24905335

RESUMO

The original CODIS database based on 13 core STR loci has been overwhelmingly successful for matching suspects with evidence. Yet there remain situations that argue for inclusion of more loci and increased discrimination. The PowerPlex(®) Fusion System allows simultaneous amplification of the following loci: Amelogenin, D3S1358, D1S1656, D2S441, D10S1248, D13S317, Penta E, D16S539, D18S51, D2S1338, CSF1PO, Penta D, TH01, vWA, D21S11, D7S820, D5S818, TPOX, DYS391, D8S1179, D12S391, D19S433, FGA, and D22S1045. The comprehensive list of loci amplified by the system generates a profile compatible with databases based on either the expanded CODIS or European Standard Set (ESS) requirements. Developmental validation testing followed SWGDAM guidelines and demonstrated the quality and robustness of the PowerPlex(®) Fusion System across a number of variables. Consistent and high-quality results were compiled using data from 12 separate forensic and research laboratories. The results verify that the PowerPlex(®) Fusion System is a robust and reliable STR-typing multiplex suitable for human identification.


Assuntos
Bases de Dados Genéticas , Genética Forense , Humanos , Repetições de Microssatélites
7.
Forensic Sci Int Genet ; 6(1): 124-31, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21466982

RESUMO

We describe the developmental validation study performed on the PowerPlex(®) ESX 16 (European Standard Extended 16) and the PowerPlex(®) ESX 17 Systems, part of a suite of four new DNA profiling kits developed by Promega in response to the ENFSI and EDNAP groups' call for new STR multiplexes for Europe. The PowerPlex(®) ESX 16 System combines the 11 loci compatible with the UK National DNA Database, contained within the AmpFlSTR(®) SGM Plus(®) PCR Amplification Kit, with five additional loci: D2S441, D10S1248, D22S1045, D1S1656 and D12S391. The multiplex was designed to incorporate these five new loci as mini- and midi-STRs while maintaining the loci found in the AmpFlSTR(®) SGM Plus(®) kit as standard size. The PowerPlex(®) ESX 17 System amplifies the same loci as the PowerPlex(®) ESX 16 System, but with the addition of a primer pair for the SE33 locus. Tests were designed to address the developmental validation guidelines issued by the Scientific Working Group on DNA Analysis Methods (SWGDAM), and those of the DNA Advisory Board (DAB). Samples processed include DNA mixtures, PCR reactions spiked with inhibitors, a sensitivity series, and 306 United Kingdom donor samples to determine concordance with data generated with the AmpFlSTR(®) SGM Plus(®) kit. Allele frequencies from 242 white Caucasian samples collected in the United Kingdom are also presented. The PowerPlex(®) ESX 16 and ESX 17 Systems are robust and sensitive tools, suitable for the analysis of forensic DNA samples. Full profiles were routinely observed with 62.5 pg of a fully heterozygous single source DNA template. In mixture analysis, a range of 52-95% of unique minor contributor alleles was observed at 19:1 mixture ratios where only 25 pg of the minor component was present. Improved sensitivity combined with the robustness afforded by smaller amplicons has substantially improved the quantity of information obtained from degraded samples, and the improved chemistry confers exceptional tolerance to high levels of laboratory prepared inhibitors.


Assuntos
DNA/genética , Frequência do Gene , Humanos , Repetições de Microssatélites , Reação em Cadeia da Polimerase
8.
Forensic Sci Int Genet ; 5(5): 436-48, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21071297

RESUMO

In response to the ENFSI and EDNAP groups' call for new STR multiplexes for Europe, Promega(®) developed a suite of four new DNA profiling kits. This paper describes the developmental validation study performed on the PowerPlex(®) ESI 16 (European Standard Investigator 16) and the PowerPlex(®) ESI 17 Systems. The PowerPlex(®) ESI 16 System combines the 11 loci compatible with the UK National DNA Database(®), contained within the AmpFlSTR(®) SGM Plus(®) PCR Amplification Kit, with five additional loci: D2S441, D10S1248, D22S1045, D1S1656 and D12S391. The multiplex was designed to reduce the amplicon size of the loci found in the AmpFlSTR(®) SGM Plus(®) kit. This design facilitates increased robustness and amplification success for the loci used in the national DNA databases created in many countries, when analyzing degraded DNA samples. The PowerPlex(®) ESI 17 System amplifies the same loci as the PowerPlex(®) ESI 16 System, but with the addition of a primer pair for the SE33 locus. Tests were designed to address the developmental validation guidelines issued by the Scientific Working Group on DNA Analysis Methods (SWGDAM), and those of the DNA Advisory Board (DAB). Samples processed include DNA mixtures, PCR reactions spiked with inhibitors, a sensitivity series, and 306 United Kingdom donor samples to determine concordance with data generated with the AmpFlSTR(®) SGM Plus(®) kit. Allele frequencies from 242 white Caucasian samples collected in the United Kingdom are also presented. The PowerPlex(®) ESI 16 and ESI 17 Systems are robust and sensitive tools, suitable for the analysis of forensic DNA samples. Full profiles were routinely observed with 62.5pg of a fully heterozygous single source DNA template. This high level of sensitivity was found to impact on mixture analyses, where 54-86% of unique minor contributor alleles were routinely observed in a 1:19 mixture ratio. Improved sensitivity combined with the robustness afforded by smaller amplicons has substantially improved the quantity of data obtained from degraded samples, and the improved chemistry confers exceptional tolerance to high levels of laboratory prepared inhibitors.


Assuntos
Cor de Olho , Repetições de Microssatélites , Sequência de Bases , Primers do DNA , Europa (Continente) , Humanos , Polimorfismo de Nucleotídeo Único , Reprodutibilidade dos Testes
9.
Forensic Sci Int Genet ; 5(4): 269-75, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20457109

RESUMO

The PowerPlex(®) ESX 17 and ESI 17 Systems for short tandem repeat (STR) amplification were developed by the Promega Corporation to meet the European Network of Forensic Science Institutes (ENFSI) and the European DNA Profiling (EDNAP) Group recommendations for increasing the number of STR loci included in the European Standard Set (ESS). The PowerPlex ESX 17 and ESI 17 Systems utilize different PCR primer combinations to co-amplify the following 17 loci: D1S1656, D2S441, D2S1338, D3S1358, D8S1179, D10S1248, D12S391, D16S539, D18S51, D19S433, D21S11, D22S1045, FGA, TH01, vWA, SE33, and the sex-typing locus amelogenin. A total of 1443 U.S. population samples were evaluated with pre-commercialization versions of both kits. Stutter and heterozygote peak height ratios have been used to characterize kit performance. Typing results have been used to estimate the match probabilities provided by the chosen loci as well as in concordance studies. Full concordance between the typing results for the two kits was observed in 99.994% (49,055 out of 49,062) STR allele calls compared. All genotyping discrepancies were confirmed by DNA sequence analysis. As a result of these comparisons, a second forward primer for the D22S1045 locus has been added to the PowerPlex ESX 17 System to address a primer binding site mutation and the D1S1656 locus reverse primer in the PowerPlex ESI 17 System was modified to eliminate an amplification-efficiency reducing primer dimer.


Assuntos
Impressões Digitais de DNA/instrumentação , Bases de Dados de Ácidos Nucleicos , Reação em Cadeia da Polimerase , Sequências de Repetição em Tandem , Primers do DNA , Genética Populacional , Genótipo , Humanos , Mutação , Grupos Raciais/genética , Análise de Sequência de DNA
10.
Forensic Sci Int Genet ; 4(4): 257-64, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20457027

RESUMO

STR multiplexes remain the cornerstone of genotyping forensic samples. The PowerPlex 16 HS System contains the core CODIS loci: D3S1358, D5S818, D7S820, D8S1179, D13S317, D16S539, D18S51, D21S11, CSF1PO, FGA, TH01, TPOX, and vWA. Additional loci amplified in the multiplex reaction are the sex-determinant locus, amelogenin, and two pentanucleotide STR loci, Penta D and Penta E. The PowerPlex 16 HS System is an updated version of the PowerPlex 16 System; while the primers and dyes remain unchanged, it introduces an enhanced buffer system that includes hot-start Taq DNA polymerase and ensures robust performance. Due to the modification of the reaction mix, a multi-laboratory developmental validation study was completed to document performance capabilities and limitations for the revised assay. Data within this validation was generated by eight laboratories and served as the basis for the following conclusions: genotyping of single-source samples was consistent across a large range of template DNA concentrations with most laboratories obtaining complete profiles at 62.5pg. Mixture analyses showed that over 90% of minor alleles were detected at 1:9 ratios. Optimum amplification cycle number was ultimately dependent on the sensitivity of the detection instrument and could be adjusted to accommodate a range of DNA template concentrations. Reaction conditions including volume and annealing temperature as well as the concentrations of primers, Taq DNA polymerase, and magnesium were shown to be optimal and able to withstand moderate variations without affecting multiplexed STR amplification. Finally, data from non-probative samples and concordance studies showed consistent results when comparing the PowerPlex 16 HS System with the PowerPlex 16 System as well as other commercially available systems.


Assuntos
Impressões Digitais de DNA , Reação em Cadeia da Polimerase/métodos , Sequências de Repetição em Tandem , Amelogenina/genética , Animais , Primers do DNA , Fluorescência , Humanos , Cloreto de Magnésio , Reprodutibilidade dos Testes , Especificidade da Espécie , Taq Polimerase
11.
Forensic Sci Int Genet ; 2(4): 257-73, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19083835

RESUMO

Several laboratories have reported the occurrence of a split or n-1 peak at the vWA locus in PowerPlex 16 and PowerPlex ES amplification products separated on 4- and 16-capillary electrophoresis instruments. The root cause of this artifact is post-PCR reannealing of the unlabeled, unincorporated vWA primer to the 3'-end of the tetramethylrhodamine (TMR)-labeled strand of the vWA amplicon. This reannealing occurs in the capillary post-electrokinetic injection. The split peak is eliminated by incorporation into the loading cocktail of a sacrificial hybridization sequence (SHS) oligonucleotide that is complementary to the vWA primer. The SHS preferentially anneals to the primer instead of the TMR-labeled strand of the vWA amplicon. In addition, the n-10/n-18 artifact that may be seen at the vWA locus was determined to be due to double-stranded amplicon formed post-electrokinetic injection into the capillary. This was also eliminated by adding in two Complementary Oligo Targets (COT1 and COT2) in addition to the SHS oligonucleotide into the loading cocktail. These three oligonucleotides are complementary to the 33 bases at the 5'-end of the unlabeled vWA amplicon strand and the 60 bases at its 3'-end and therefore compete for hybridization to the TMR-labeled amplicon strand. Incorporation of these three oligonucleotides in the Internal Lane Standard 600 (ILS600) eliminate both the split peak and n-10/n-18 artifact in PowerPlex 16 and PowerPlex ES amplification products without affecting sizing of alleles at the vWA locus or any locus in the PowerPlex 16, PowerPlex Y, PowerPlex ES, AmpFlSTR Profiler Plus ID, AmpFlSTR Cofiler, and AmpFlSTR SGM Plus kits.


Assuntos
DNA Complementar/genética , DNA/genética , Repetições de Microssatélites/genética , Artefatos , Sequência de Bases , DNA/sangue , DNA/química , Primers do DNA , DNA Complementar/química , DNA Complementar/isolamento & purificação , Eletroforese Capilar/métodos , Corantes Fluorescentes , Amplificação de Genes , Genoma Humano , Humanos , Hibridização de Ácido Nucleico/métodos , Oligodesoxirribonucleotídeos/química , Reação em Cadeia da Polimerase/métodos , Rodaminas
12.
Radiat Environ Biophys ; 46(2): 147-54, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17072633

RESUMO

Accurate methods for measuring the biological effects of radiation are critical for estimating an individual's health risk from radiation exposure. We investigated the feasibility of using radiation-induced mutations in repetitive DNA sequences to measure genetic damage caused by radiation exposure. Most repetitive sequences are in non-coding regions of the genome and alterations in these loci are usually not deleterious. Thus, mutations in non-coding repetitive sequences might accumulate, providing a stable molecular record of DNA damage caused by all past exposures. To test this hypothesis, we screened repetitive DNA sequences to identify the loci most sensitive to radiation-induced mutations and then investigated whether these mutations were stable in vivo over time and after multiple exposures. Microsatellite repeat markers were identified that exhibited a linear dose response up to 1 Gy of 1 GeV/nucleon 56Fe ions and 137Cs gamma rays in mouse and human cells. Short tandem repeats on the Y chromosome and mononucleotide repeats on autosomal chromosomes exhibited significant increases in mutations at >or= 0.5 Gy of 56Fe ions with frequencies averaging 4.3-10.3 x 10(-3) mutations/locus/Gy/cell, high enough for direct detection of mutations in irradiated cells. A significant increase in radiation-induced mutations in extended mononucleotide repeats was detectible in vivo in mouse blood and cheek samples 10 and 26 weeks after radiation exposure and these mutations were additive over multiple exposures. This study demonstrates the feasibility of a novel method for biodosimetry that is applicable to humans and other species. This new approach should complement existing methods of biodosimetry and might be useful for measuring radiation exposure in circumstances that are not amenable to current methods.


Assuntos
Bioensaio/métodos , Análise Mutacional de DNA/métodos , DNA/genética , DNA/efeitos da radiação , Repetições de Microssatélites/efeitos da radiação , Radiometria/métodos , Relação Dose-Resposta à Radiação , Estudos de Viabilidade , Repetições de Microssatélites/genética , Doses de Radiação , Análise de Sequência de DNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA