Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Trends Biochem Sci ; 44(1): 7-20, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30337134

RESUMO

Monotopic membrane proteins, classified by topology, are proteins that embed into a single face of the membrane. These proteins are generally underrepresented in the Protein Data Bank (PDB), but the past decade of research has revealed new examples that allow the description of generalizable features. This Opinion article summarizes shared characteristics including oligomerization states, modes of membrane association, mechanisms of interaction with hydrophobic or amphiphilic substrates, and homology to soluble folds. We also discuss how associations of monotopic enzymes in pathways can be used to promote substrate specificity and product composition. These examples highlight the challenges in structure determination specific to this class of proteins, but also the promise of new understanding from future study of these proteins that reside at the interface.


Assuntos
Proteínas de Membrana/química , Animais , Bases de Dados de Proteínas , Humanos , Interações Hidrofóbicas e Hidrofílicas
2.
Nat Chem Biol ; 14(6): 538-541, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29769739

RESUMO

Polyprenol phosphate phosphoglycosyl transferases (PGTs) catalyze the first membrane-committed step in assembly of essential glycoconjugates. Currently there is no structure-function information to describe how monotopic PGTs coordinate the reaction between membrane-embedded and soluble substrates. We describe the structure and mode of membrane association of PglC, a PGT from Campylobacter concisus. The structure reveals a unique architecture, provides mechanistic insight and identifies ligand-binding determinants for PglC and the monotopic PGT superfamily.


Assuntos
Campylobacter/enzimologia , Membrana Celular/enzimologia , Glicosiltransferases/química , Fosfatos/química , Catálise , Domínio Catalítico , Clonagem Molecular , Cisteína/química , Glicoconjugados/química , Ligantes , Mutação , Fosforilação , Domínios Proteicos , Dobramento de Proteína , Estrutura Secundária de Proteína , Relação Estrutura-Atividade , Especificidade por Substrato
3.
Arch Biochem Biophys ; 675: 108111, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31563509

RESUMO

Long-chain polyprenol phosphates feature in membrane-associated glycoconjugate biosynthesis pathways across domains of life. These unique amphiphilic molecules are best known as substrates of polytopic membrane proteins, including polyprenol-phosphate phosphoglycosyl and glycosyl transferases, and as components of more complex substrates. The linear polyprenols are constrained by double bond geometry and lend themselves well to interactions with polytopic membrane proteins, in which multiple transmembrane helices form a rich landscape for interactions. Recently, a new superfamily of monotopic phosphoglycosyl transferase enzymes has been identified that interacts with polyprenol phosphate substrates via a single reentrant membrane helix. Intriguingly, despite the dramatic differences in their membrane-interaction domains, both polytopic and monotopic enzymes similarly favor a unique cis/trans geometry in their polyprenol phosphate substrates. Herein, we present a multipronged biochemical and biophysical study of PglC, a monotopic phosphoglycosyl transferase that catalyzes the first membrane-committed step in N-linked glycoprotein biosynthesis in Campylobacter jejuni. We probe the significance of polyprenol phosphate geometry both in mediating substrate binding to PglC and in modulating the local membrane environment. Geometry is found to be important for binding to PglC; a conserved proline residue in the reentrant membrane helix is determined to drive polyprenol phosphate recognition and specificity. Pyrene fluorescence studies show that polyprenol phosphates at physiologically-relevant levels increase the disorder of the local lipid bilayer; however, this effect is confined to polyprenol phosphates with specific isoprene geometries. The molecular insights from this study may shed new light on the interactions of polyprenol phosphates with diverse membrane-associated proteins in glycoconjugate biosynthesis.


Assuntos
Poliprenois/metabolismo , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Campylobacter jejuni/crescimento & desenvolvimento , Campylobacter jejuni/metabolismo , Sequência Conservada , Fluidez de Membrana , Lipídeos de Membrana/metabolismo , Ligação Proteica , Conformação Proteica , Especificidade por Substrato , Transferases (Outros Grupos de Fosfato Substituídos)/química
4.
Biochemistry ; 56(12): 1706-1715, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28272875

RESUMO

Terpenes make up the largest and most diverse class of natural compounds and have important commercial and medical applications. Limonene is a cyclic monoterpene (C10) present in nature as two enantiomers, (+) and (-), which are produced by different enzymes. The mechanism of production of the (-)-enantiomer has been studied in great detail, but to understand how enantiomeric selectivity is achieved in this class of enzymes, it is important to develop a thorough biochemical description of enzymes that generate (+)-limonene, as well. Here we report the first cloning and biochemical characterization of a (+)-limonene synthase from navel orange (Citrus sinensis). The enzyme obeys classical Michaelis-Menten kinetics and produces exclusively the (+)-enantiomer. We have determined the crystal structure of the apoprotein in an "open" conformation at 2.3 Å resolution. Comparison with the structure of (-)-limonene synthase (Mentha spicata), which is representative of a fully closed conformation (Protein Data Bank entry 2ONG ), reveals that the short H-α1 helix moves nearly 5 Å inward upon substrate binding, and a conserved Tyr flips to point its hydroxyl group into the active site.


Assuntos
Apoproteínas/química , Citrus sinensis/química , Cicloexenos/química , Liases Intramoleculares/química , Proteínas de Plantas/química , Proteínas Recombinantes de Fusão/química , Terpenos/química , Apoproteínas/genética , Apoproteínas/metabolismo , Domínio Catalítico , Citrus sinensis/enzimologia , Clonagem Molecular , Cristalografia por Raios X , Cicloexenos/metabolismo , Difosfatos/química , Difosfatos/metabolismo , Diterpenos/química , Diterpenos/metabolismo , Ensaios Enzimáticos , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Liases Intramoleculares/genética , Liases Intramoleculares/metabolismo , Cinética , Limoneno , Mentha spicata/química , Mentha spicata/enzimologia , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Domínios Proteicos , Estrutura Secundária de Proteína , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Estereoisomerismo , Terpenos/metabolismo
5.
iScience ; 25(1): 103650, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35024585

RESUMO

Pharmacological activation of the E3 ligase Parkin represents a rational therapeutic intervention for the treatment of Parkinson's disease. Here we identify several compounds that enhance the activity of wildtype Parkin in the presence of phospho-ubiquitin and act as positive allosteric modulators (PAMs). While these compounds activate Parkin in a series of biochemical assays, they do not act by thermally destabilizing Parkin and fail to enhance the Parkin translocation rate to mitochondria or to enact mitophagy in cell-based assays. We conclude that in the context of the cellular milieu the therapeutic window to pharmacologically activate Parkin is very narrow.

6.
Elife ; 72018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-30168796

RESUMO

Monotopic membrane proteins integrate into the lipid bilayer via reentrant hydrophobic domains that enter and exit on a single face of the membrane. Whereas many membrane-spanning proteins have been structurally characterized and transmembrane topologies can be predicted computationally, relatively little is known about the determinants of membrane topology in monotopic proteins. Recently, we reported the X-ray structure determination of PglC, a full-length monotopic membrane protein with phosphoglycosyl transferase (PGT) activity. The definition of this unique structure has prompted in vivo, biochemical, and computational analyses to understand and define key motifs that contribute to the membrane topology and to provide insight into the dynamics of the enzyme in a lipid bilayer environment. Using the new information gained from studies on the PGT superfamily we demonstrate that two motifs exemplify principles of topology determination that can be applied to the identification of reentrant domains among diverse monotopic proteins of interest.


Assuntos
Membrana Celular/química , Bicamadas Lipídicas/química , Proteínas de Membrana/química , Domínios Proteicos , Motivos de Aminoácidos/genética , Sequência de Aminoácidos , Sítios de Ligação/genética , Membrana Celular/metabolismo , Cristalografia por Raios X , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Simulação de Dinâmica Molecular , Homologia de Sequência de Aminoácidos , Transferases/química , Transferases/genética , Transferases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA