RESUMO
The fabrication of optically active heterostructures in the shape of mesostructured thin films is a highly challenging task. It requires an integrated process to allow in one-step incorporating the two-dimensional materials within the mesoporous ordered host without disrupting the pore organization. Hexagonal boron nitride (BN) nanosheets have been successfully introduced into titania mesoporous films using a template-assisted sol-gel synthesis and evaporation-induced self-assembly. Two types of BN sheets have been used, with and without defects, to investigate the role of defects in heterostructure properties. It has been found that the defects increase the ultraviolet radiation A (UVA) absorbance and enhance the photocatalytic response of the film. The BN sheets are optically transparent and do not exhibit any photocatalytic property but contribute to anatase crystallization via heterogeneous nucleation.
RESUMO
The present work concerns the catalytic effect of VNbO5, a ternary oxide prepared via a solid-state route, on the sorption performance of MgH2. Three doped systems, namely 5, 10 and 15 wt% VNbO5-MgH2 have been prepared by ball milling and thoroughly characterized. Hydrogen sorption, evaluated by temperature programmed desorption experiments, revealed a significant reduction of the desorption temperature from 330 °C for the un-doped sample (prepared and tested for comparison) to 235 °C for the VNbO5-doped sample. Furthermore, more than 5 wt% of hydrogen can be absorbed in 5 minutes at 160 °C under 20 bar of hydrogen, which is remarkable compared to the 0.7 wt% achieved for the un-doped system. The sample doped with 15 wt% of additive, showed good reversibility: over 5 wt% of hydrogen with negligible degradation even after 70 consecutive cycles at 275 °C and 50 cycles at 300 °C. The kinetics analysis carried out by Kissinger's method exhibited a considerable reduction of the activation energy for the desorption process. Finally, pressure-composition-isotherm experiments conducted at three different temperatures allowed estimating the thermodynamic stability of the system and shed light on the additive role of VNbO5.
RESUMO
An innovative approach towards the physico-chemical tailoring of zinc oxide thin films is reported. The films have been deposited by liquid phase using the sol-gel method and then exposed to hard X-rays, provided by a synchrotron storage ring, for lithography. The use of surfactant and chelating agents in the sol allows easy-to-pattern films made by an organic-inorganic matrix to be deposited. The exposure to hard X-rays strongly affects the nucleation and growth of crystalline ZnO, triggering the formation of two intermediate phases before obtaining a wurtzite-like structure. At the same time, X-ray lithography allows for a fast patterning of the coatings enabling microfabrication for sensing and arrays technology.
RESUMO
Designing safe, compact and high capacity hydrogen storage systems is the key step towards introducing a pollutant free hydrogen technology into a broad field of applications. Due to the chemical bonds of hydrogen-metal atoms, metal hydrides provide high energy density in safe hydrogen storage media. Reactive hydride composites (RHCs) are a promising class of high capacity solid state hydrogen storage systems. Ca(BH4)2 + MgH2 with a hydrogen content of 8.4 wt% is one of the most promising members of the RHCs. However, its relatively high desorption temperature of â¼350 °C is a major drawback to meeting the requirements for practical application. In this work, by using NbF5 as an additive, the dehydrogenation temperature of this RHC was significantly decreased. To elucidate the role of NbF5 in enhancing the desorption properties of the Ca(BH4)2 + MgH2 (Ca-RHC), a comprehensive investigation was carried out via manometric measurements, mass spectrometry, Differential Scanning Calorimetry (DSC), in situ Synchrotron Radiation-Powder X-ray Diffraction (SR-PXD), X-ray Absorption Spectroscopy (XAS), Anomalous Small-Angle X-ray Scattering (ASAXS), Scanning and Transmission Electron Microscopy (SEM, TEM) and Nuclear Magnetic Resonance (NMR) techniques.
RESUMO
Lead-free (Ba0.92Ca0.08) (Ti0.95 Zr0.05) O3 (BCZT) ceramics were prepared by a solid-state route (SSR) using ultra-low synthesis (700 °C/30 min and 700 °C/2 h) and sintering temperatures (from 1150 °C to 1280 °C), due to prior activation and homogenization by attrition milling of the starting high purity raw materials for 6 h before the synthesis and of the calcined powders for 3 h before the sintering. The comparison of the thermal analysis of the mixture of the starting raw materials and the same mixture after 6 h attrition milling allowed to evidence the mechanisms of activation, resulting in a significant decrease of the perovskite formation temperature (from 854 °C down to 582 °C). The secondary phases that limit the functional properties of the ceramic and their evolution with the sintering conditions were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM), which allowed the design of a two-step sintering method to eliminate them. A pure tetragonal BCZT perovskite phase (P4mm, c/a = 1.004) and homogeneous ceramic microstructure was obtained for synthesis at 700 °C for 2 h and sintering with the use of a two-step sintering treatment (900 °C for 3 h and 1280 °C for 6 h). The best electromechanical properties achieved were d33 = 455 pC/N, kp = 35%, Qm = 155.
RESUMO
Tin oxide (SnO2) with versatile properties is of substantial standing for practical application, and improved features of the material are demonstrated in the current issue through the integration of nanotechnology with bio-resources leading to what is termed as biosynthesis of SnO2 nanoparticles (NPs). This review reveals the recent advances in biosynthesis of SnO2 NPs by chemical precipitation method focused on distinct methodologies, characterization, and reaction mechanism along with a photocatalytic application for dye degradation. According to available literature reviews, numerous bio-based precursors selectively extracted from biological substrates have effectively been applied as capping or reducing agents to achieve the metal oxide NPs. The major precursor obtained from the aqueous extract of root barks of Catunaregam spinosa is found to be 7-hydroxy-6-methoxy-2H-chromen-2-one that has been proposed as a model compound for the reduction of metal ions into nanoparticles due to having highly active functional groups, being abundant in plants (67.475 wt%), easy to extract, and eco benign. In addition, the photocatalytic activity of SnO2 NPs for the degradation of organic dyes, pharmaceuticals, and agricultural contaminants has been discussed in the context of a promising bio-reduction mechanism of the synthesis. The final properties are supposed to depend exclusively upon a number of factors, e.g., particle size (< 50 nm), bandgap (< 3.6 eV), crystal defects, and catalysts dosage. With this contribution, it has been perceived not only to provide an overview of recent advances in the biosynthesis of SnO2 NPs but also to indicate the main issues in need aiming to show vision towards innovative outcomes.
Assuntos
Nanopartículas Metálicas , Nanopartículas , Catálise , Precipitação Química , Compostos de EstanhoRESUMO
The transformation of olivine during the conversion of CO2 to light hydrocarbons activated by mechanochemical treatments at different impact frequencies was studied by a combination of several complementary characterization methods including X-ray diffraction, Raman and 57Fe Mössbauer spectroscopy. Several olivine samples were studied as a function of the milling time, indicating the gradual transformation of FeII-containing olivine into new FeIII-containing weathering products including iron oxides, magnesium iron carbonates and silicates. The results presented here complement those of a previous study on the weathering process of olivine promoted by mechanochemical activation, by demonstrating the role of the redox activity of the iron species during the activation process. These additional spectroscopic results allow us to thoroughly understand the complex weathering mechanism and to correlate it with the efficiency of the CO2 conversion and storage properties of mechanochemically activated olivine. Supplementary Information: The online version contains supplementary material available at 10.1007/s10853-022-06962-x.
RESUMO
Iron oxides/oxyhydroxides, namely maghemite, iron oxide-silica composite, akaganeite, and ferrihydrite, are studied for AsV and AsIII removal from water in the pH range 2-8. All sorbents were characterized for their structural, morphological, textural, and surface charge properties. The same experimental conditions for the batch tests permitted a direct comparison among the sorbents, particularly between the oxyhydroxides, known to be among the most promising As-removers but hardly compared in the literature. The tests revealed akaganeite to perform better in the whole pH range for AsV (max 89 mg g-1 at pH0 3) but to be also efficient toward AsIII (max 91 mg g-1 at pH0 3-8), for which the best sorbent was ferrihydrite (max 144 mg g-1 at pH0 8). Moreover, the study of the sorbents' surface chemistry under contact with arsenic and arsenic-free solutions allowed the understanding of its role in the arsenic uptake through electrophoretic light scattering and pH measurements. Indeed, the sorbent's ability to modify the starting pH was a crucial step in determining the removal of performances. The AsV initial concentration, contact time, ionic strength, and presence of competitors were also studied for akaganeite, the most promising remover, at pH0 3 and 8 to deepen the uptake mechanism.
RESUMO
Magnesium imide (MgNH) was produced by monitoring the decomposition process of magnesium amide with in situ neutron diffraction. Significant changes in the structure of magnesium amide are detected during heat treatment and eventually result in the formation of crystalline MgNH. A model for the crystal structure of magnesium imide (MgNH) is presented for the first time. Remarkably, magnesium imide offers unique structural features similar to the cyclosilicate class and can be described as a porous solid formed by a sequence of linked chains of face sharing Mg(6)N(6) hexagonal prism clusters.
RESUMO
Due to the ever-increasing limitations of the use of lead-based materials, the manufacturing of lead-free piezoceramics with competitive piezoelectric properties and established nontoxicity is considered a priority for the scientific and industrial community. In this work, a lead-free system based on sodium potassium niobate (KNN), opportunely modified with MgNb2O6 (MN), was prepared through a combination of a mechanochemical activation method and air sintering, and its toxicity was evaluated. The effect of the mechanical processing on the microstructure refinement of the processed powders was established by X-ray diffraction and the average crystallite size content of the Nb2O5 species was evaluated. The experimental evidence was rationalized using a phenomenological model which permitted us to obtain the amount of powder processed at each collision and to optimize the activation step of the pre-calcined reagents. This influenced the final density and piezoresponse of the as-sintered pellets, which showed optimal properties compared with other KNN systems. Their toxicological potential was evaluated through exposure experiments to the pulverized KNN-based pellets, employing two widely used human and environmental cellular models. The in vitro assays proved, under the selected conditions, the absence of cytotoxicity of KNN-bases systems here studied.
RESUMO
In this work, piezoceramics of the lead-free composition K0.5 Na0.5 NbO3 with an increasing amount of MgNb2 O6 (0, 0.5, 1, 2â wt.%) were prepared through conventional solid-state synthesis and sintered in air atmosphere at 1100 °C. The effect of magnesium niobate addition on structure, microstructure and piezoelectric properties was evaluated. The ceramics maintain the orthorhombic Amm2 phase for all compositions, while an orthorhombic Pbcm secondary phase was found for increasing the concentration of MgNb2 O6 . Our results show that densification of these ceramics can be significantly improved up to 94.9 % of theoretical density by adding a small amount of magnesium-based oxide (1â wt.%). Scanning electron microscopy morphology of the 1â wt.% system reveals a well-packed structure with homogeneous grain size of â¼2.72â µm. Dielectric and piezoelectric properties become optimal for 0.5-1.0â wt.% of MgNb2 O6 that shows, with respect to the unmodified composition, either higher piezoelectric coefficients, lower anisotropy and relatively low piezoelectric losses (d33 =97â pC N-1 ; d31 =-36.99â pC N-1 and g31 =-14.04×10-3 â mV N-1 ; Qp (d31 )=76 and Qp (g31 )=69) or enhanced electromechanical coupling factors (kp =29.06 % and k31 =17.25 %).
RESUMO
Bottom-up synthesis of fluorescent boron-nitride based dots is a challenging task because an accurate design of the structure-properties relationship is, in general, difficult to achieve. Incorporation of the dots into a solid-state matrix is also another important target to develop light-emitting devices. Two-colour fluorescent boron oxynitride nanodots have been obtained by a bottom-up synthesis route and incorporated into a hybrid organic-inorganic film. A combination of different analytical techniques such as XPS, XRD, TEM, UV-Vis, TGA-DTA and fluorescence has been used to characterise the structure, composition and properties of the boron oxynitride dots. The presence of defects in the boron oxynitride structure is the source of the two-colour fluorescence. The BN dots thermal stability is limited to around 100⯰C; higher temperatures induce condensation of the structure, which leads to a lower emission. Upon incorporation into a hybrid organic-inorganic film deposited by spin-coating, the boron oxynitride dots maintain their fluorescence and have shown to be highly compatible with the sol-gel chemistry.
RESUMO
Due to the considerable interest in vanadium niobium oxides as a lithium storage material, the kinetics and transformation processes of the V2O5-5Nb2O5 system have been investigated by in situ synchrotron powder X-ray diffraction. The diffraction data after the thermal treatments selected with a view on the most significant features were supplemented with specific ex situ experiments conducted using a laboratory rotating anode X-ray diffractometer. The morphological changes of the mixed powders assuming an amorphous and nanocrystalline solid solution structure as a function of the temperature were inspected by scanning electron microscopy observations. The structural solution of the powder diffraction pattern of the phase recorded in situ at a temperature of about 700 °C was compatible with an orthorhombic crystal structure with the space group Amm2. The obtained lattice parameters for this structure were a = 3.965 Å; b = 17.395 Å, c = 17.742 Å, and the cell composition was V4Nb20O60, Pearson symbol oA84, and density = 4.10 g cm-3. In this structure, while the niobium atoms may be four-, five-, and six-fold coordinated by oxygen atoms, the vanadium atoms were six-fold or seven-fold coordinated. At the temperature of 800 °C and just above, the selected 1 : 2 and 1 : 3 V2O5-Nb2O5 compositions, respectively, returned mostly a tetragonal VNb9O25 phase, in line with earlier observations conducted for determination of the stability phase diagram of such quasi-binary systems.
RESUMO
Artificial nano-heterostructures (NHs) with controlled morphology, obtained by combining two or more components in several possible architectures, make them suitable for a wide range of applications. Here, we propose an oleate-based solvothermal approach to design silver-spinel ferrite flower-like NHs. Small oleate-coated silver nanoparticles were used as seeds for the growth of magnetic spinel ferrite (cobalt ferrite and spinel iron oxide) nanodomains on their surface. With the aim of producing homogeneous flower-like heterostructures, a careful study of the effect of the concentration of precursors, the reaction temperature, the presence of water, and the chemical nature of the spinel ferrite was carried out. The magnetic and optical properties of the NHs were also investigated. A heterogeneous growth of the spinel ferrite phase on the silver nanoparticles, through a possible defect-assisted mechanism, was suggested in the light of the high concentration of stacking faults (intrinsic and twins) in the silver seeds, revealed by Rietveld refinement of powder X-ray diffraction patterns and High-Resolution electron microscopy.
RESUMO
A new and solvent-free synthesis route has been adopted and optimized to prepare crystalline VNbO5 from the mechanochemical reaction between Nb2O5 and V2O5 as starting reagents. The substantially amorphous mixture of equimolar pentoxide V and Nb metals observed after extended mechanical treatment transforms into a crystalline powder following calcination under mild conditions at 710 K. The structure solution of the X-ray diffraction pattern using a global optimization approach, combined with Rietveld refinement, points to a space group P212121 (no. 19) different from Pnma (no. 62) previously proposed in the literature assuming it to be isostructural to VTaO5. The new space group helps to describe weak peaks that remained previously unaccounted for and allows more reliable determination of atomic fractional coordinates and interatomic distance distribution. The as-prepared VNbO5 has been tested as a dopant (5 wt%) for the purpose of solid state hydrogen storage, decreasing significantly the release of hydrogen of MgH2/Mg (620 K) and further enhancing the hydrogen sorption kinetic properties.
RESUMO
In this study the Pb(2+), Cd(2+) and Zn(2+) adsorption capacity of a natural zeolite was evaluated in batch tests at a constant pH of 5.5 by polluting this mineral with solutions containing increasing concentrations of the three cations to obtain adsorption isotherms. In addition X-ray powder diffraction (XRD) was used to investigate the changes of zeolite structure caused by the exchange with cations of different ionic radius. The zeolite adsorption capacity for the three cations was Zn>Pb>Cd. Moreover a sequential extraction procedure [H(2)O, 0.05 M Ca(NO(3))(2) and 0.02 M EDTA] was applied to zeolite samples used in the adsorption experiments to determine the chemical form of the cations bound to the sorbent. Using this approach it was shown that low concentrations of Pb(2+), Cd(2+) and Zn(2+) were present as water-soluble and exchangeable fractions (<25% of the Me adsorbed), while EDTA extracted most of the adsorbed cations from the zeolite (>27% of the Me adsorbed). The XRD pattern of zeolite, analysed according to the Rietveld method, showed that the main mineralogical phase involved in the adsorption process was clinoptilolite. Besides structure information showed that the incorporation of Pb(2+), Cd(2+) and Zn(2+), into the zeolite frameworks changed slightly but appreciably the lattice parameters. XRD analysis also showed the occurrence of some isomorphic substitution phenomena where the Al(3+) ions of the clinoptilolite framework were replaced by exchanged Pb(2+) cations in the course of the ion exchange reaction. This mechanism was instead less evident in the patterns of the samples doped with Cd(2+) and Zn(2+) cations.
Assuntos
Cádmio/química , Chumbo/química , Zeolitas/química , Zinco/química , Adsorção , Cátions Bivalentes , Pós , Difração de Raios XRESUMO
We evaluate the influence of the use of different titania precursors, calcination rate, and ligand addition on the morphology, texture and phase content of synthesized mesoporous titania samples, parameters which, in turn, can play a key role in titania photocatalytic performances. The powders, obtained through the evaporation-induced self-assembly method, are characterized by means of ex situ X-Ray Powder Diffraction (XRPD) measurements, N2 physisorption isotherms and transmission electron microscopy. The precursors are selected basing on two different approaches: the acid-base pair, using TiCl4 and Ti(OBu)4, and a more classic route with Ti(OiPr)4 and HCl. For both precursors, different specimens were prepared by resorting to different calcination rates and with and without the addition of acetylacetone, that creates coordinated species with lower hydrolysis rates, and with different calcination rates. Each sample was employed as photoanode and tested in the water splitting reaction by recording I-V curves and comparing the results with commercial P25 powders. The complex data framework suggests that a narrow pore size distribution, due to the use of acetylacetone, plays a major role in the photoactivity, leading to a current density value higher than that of P25.
RESUMO
In this study we evaluated the arsenate adsorption capacity of red muds (RM), wastes tailing from the alumina production, at different pH values (4, 7, and 10). RM samples were artificially enriched in batch tests with solutions containing increasing concentrations of As(V). The pH of the solution significantly affected the adsorption, which increased with the decrease of pH. Moreover a sequential extraction procedure [H(2)O; (NH(4))(2)SO(4); NH(4)H(2)PO(4); NH(4)(+)-oxalate; NH(4)(+)-oxalate+ascorbic acid] was applied to RM samples exchanged with arsenate. Using this approach it was shown that low concentrations of arsenate sorbed in RM were present as water soluble and exchangeable fractions, while NH(4)(+)-oxalate and NH(4)(+)-oxalate+ascorbic acid extracted most of the adsorbed arsenate from RM at different pH values. Besides, FT-IR spectroscopy was used to better understand the nature of RM surface configuration after As(V) sorption. In the FT-IR spectra the presence of As(V) species was highlighted by a well resolved band at 865 cm(-1). The intensity and broadness of this band increased at the decreasing of pH. This band could be related to nu(As-O) vibration of an inner-sphere Al-O-As complex and/or due to As-O bonds of the adsorbed As(V) species on Fe oxides of RM samples.
Assuntos
Óxido de Alumínio/análise , Arseniatos/química , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Adsorção , Alumínio/química , Óxido de Alumínio/química , Ácido Ascórbico/química , Monitoramento Ambiental/métodos , Compostos Férricos/química , Concentração de Íons de Hidrogênio , Resíduos Industriais , Oxalatos/química , Óxidos/química , Propriedades de Superfície , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Purificação da Água/métodos , Difração de Raios XRESUMO
The necropolis of S'Illot des Porros, one of the most important prehistoric funerary sites of the Balearic Islands (Spain), was in use from the VIth and Vth century BCE until the Ist century CE. Located in a funerary area which contains two cementeries and one sanctuary, this site is constituted by three funerary chambers named A, B and C, respectively. Investigations on all the human burnt bone remains of the chambers, carried out mainly by the X-ray diffraction and supplemented in some cases by Fourier Transform Infrared spectroscopy pointed to the simultaneous use of inhumation and cremation funerary rites, probably due to existing social differences. In particular, it was argued that the chambers were differentiated, i.e., B was dedicated to inhumations and A to cremations, the cremations found in chamber B very likely being a result of a cleaning-purification of the burial area. Moreover, chamber C, which is the most ancient (IVth century BCE) and with the largest number of inhumed remains, contains the smallest number of remains that were exposed to fire and just in one case it seems possible to attribute a genuine high-temperature cremation.
Assuntos
Antropologia Cultural , Cremação/história , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Feminino , História Antiga , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Espanha , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X , Adulto JovemRESUMO
In view of the difficulties in extracting quantitative information from burned bone, we suggest a new and accurate method of determining the temperature and duration of burning of human remains in forensic contexts. Application of the powder X-ray diffraction approach to a sample of human bone and teeth allowed their microstructural behavior, as a function of temperature (200-1000 degrees C) and duration of burning (0, 18, 36, and 60 min), to be predicted. The experimental results from the 57 human bone sections and 12 molar teeth determined that the growth of hydroxylapatite crystallites is a direct and predictable function of the applied temperature, which follows a nonlinear logistic relationship. This will allow the forensic investigator to acquire useful information about the equilibrium temperature brought about by the burning process and to suggest a reasonable duration of fire exposure.