Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(10): e59, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37070179

RESUMO

Targeted in vivo hypermutation accelerates directed evolution of proteins through concurrent DNA diversification and selection. Although systems employing a fusion protein of a nucleobase deaminase and T7 RNA polymerase present gene-specific targeting, their mutational spectra have been limited to exclusive or dominant C:G→T:A mutations. Here we describe eMutaT7transition, a new gene-specific hypermutation system, that installs all transition mutations (C:G→T:A and A:T→G:C) at comparable frequencies. By using two mutator proteins in which two efficient deaminases, PmCDA1 and TadA-8e, are separately fused to T7 RNA polymerase, we obtained similar numbers of C:G→T:A and A:T→G:C substitutions at a sufficiently high frequency (∼6.7 substitutions in 1.3 kb gene during 80-h in vivo mutagenesis). Through eMutaT7transition-mediated TEM-1 evolution for antibiotic resistance, we generated many mutations found in clinical isolates. Overall, with a high mutation frequency and wider mutational spectrum, eMutaT7transition is a potential first-line method for gene-specific in vivo hypermutation.


Assuntos
Edição de Genes , Mutação , Taxa de Mutação , Edição de Genes/métodos
2.
Nucleic Acids Res ; 50(7): e38, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-34928386

RESUMO

Methods that can randomly introduce mutations in the microbial genome have been used for classical genetic screening and, more recently, the evolutionary engineering of microbial cells. However, most methods rely on either cell-damaging agents or disruptive mutations of genes that are involved in accurate DNA replication, of which the latter requires prior knowledge of gene functions, and thus, is not easily transferable to other species. In this study, we developed a new mutator for in vivo mutagenesis that can directly modify the genomic DNA. Mutator protein, MutaEco, in which a DNA-modifying enzyme is fused to the α-subunit of Escherichia coli RNA polymerase, increases the mutation rate without compromising the cell viability and accelerates the adaptive evolution of E. coli for stress tolerance and utilization of unconventional carbon sources. This fusion strategy is expected to accommodate diverse DNA-modifying enzymes and may be easily adapted to various bacterial species.


Assuntos
Escherichia coli , Técnicas Genéticas , Replicação do DNA/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Mutagênese
3.
Molecules ; 23(9)2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-30131476

RESUMO

Proteases have evolved to mediate the hydrolysis of peptide bonds but may perform transpeptidation in the presence of a proper nucleophilic molecule that can effectively compete with water to react with the acyl-enzyme intermediate. There have been several examples of protease-mediated transpeptidation, but they are generally inefficient, and little effort has been made to systematically control the transpeptidation activity of other proteases with good nucleophiles. Here, we developed an on-bead screening approach to find a probe that functions efficiently as a nucleophile in the protease-mediated transpeptidation reaction, and we identified good probes for a model protease DegP. These probes were covalently linked to the C-termini of the cleaved peptides in a mild condition and made the selective enrichment of ligated peptides possible. We suggest that good nucleophilic probes can be found for many other proteases that act via acyl-enzyme intermediates, and these probes will help characterize their substrates.


Assuntos
Peptídeo Hidrolases/química , Peptídeos/química , Biotina/química , Proteínas de Choque Térmico/química , Hidrólise , Sondas Moleculares , Muramidase/química , Muramidase/metabolismo , Peptídeo Hidrolases/metabolismo , Peptídeos/metabolismo , Proteínas Periplásmicas/química , Proteólise , Serina Endopeptidases/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA