Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Science ; 227(4683): 134-40, 1985 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-3917574

RESUMO

The mouse heavy chain immunoglobulin gene contains a tissue-specific enhancer. The enhancer and flanking sequences were studied in vivo by carrying out dimethyl sulfate protection experiments on living cells, in combination with genomic sequencing. Relative to reactions on naked DNA, there are changes (protections and enhancements) in the reactivity of guanine residues to dimethyl sulfate within the enhancer sequence in myeloma, B, and early B cells, whereas virtually no alterations appear in cells of non-B lineage. Most of the affected residues are in four clusters, in sequences homologous to the octamer 5'CAGGTGGC 3' (C, cytosine; A, adenine; G. guanine; T, thymine). The alterations in the pattern of G reactivity are consistent with the tissue-specific binding of molecules to the mouse immunoglobulin heavy chain enhancer.


Assuntos
Linfócitos B/metabolismo , Elementos Facilitadores Genéticos , Genes Reguladores , Cadeias Pesadas de Imunoglobulinas/genética , Animais , Sequência de Bases , Linhagem Celular , Guanina/metabolismo , Metilação , Camundongos , Mieloma Múltiplo/genética , RNA Mensageiro/metabolismo , Ésteres do Ácido Sulfúrico/metabolismo
2.
Curr Opin Genet Dev ; 11(4): 374-83, 2001 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-11448623

RESUMO

Recent advances shed light on the cellular processes that cooperate during oogenesis to produce a fully patterned egg, containing all the maternal information required for embryonic development. Progress has been made in defining the early steps in oocyte specification and it has been shown that progression of oogenesis is controlled by a meiotic checkpoint and requires active maintenance of the oocyte cell fate. The function of Gurken signalling in patterning the dorsal-ventral axis later in oogenesis is better understood. Anterior-posterior patterning of the embryo requires activities of bicoid and oskar mRNAs, localised within the oocyte. A microtubule motor, Kinesin, is directly implicated in localisation of oskar mRNA to the posterior pole of the oocyte.


Assuntos
Padronização Corporal/fisiologia , Proteínas de Drosophila , Drosophila melanogaster/embriologia , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador alfa , Animais , Diferenciação Celular , Citoesqueleto , Proteínas de Insetos/metabolismo , Meiose/fisiologia , Oócitos/fisiologia , Oogênese , Biossíntese de Proteínas , RNA Mensageiro , Fatores de Crescimento Transformadores/metabolismo
3.
Curr Biol ; 11(21): 1666-74, 2001 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-11696323

RESUMO

BACKGROUND: mRNA localization is a powerful and widely employed mechanism for generating cell asymmetry. In Drosophila, localization of mRNAs in the oocyte determines the axes of the future embryo. oskar mRNA localization at the posterior pole is essential and sufficient for the specification of the germline and the abdomen. Its posterior transport along the microtubules is mediated by Kinesin I and several proteins, such as Mago-nashi, which, together with oskar mRNA, form a posterior localization complex. It was recently shown that human Y14, a nuclear protein that associates with mRNAs upon splicing and shuttles to the cytoplasm, interacts with MAGOH, the human homolog of Mago-nashi. RESULTS: Here, we show that Drosophila Y14 interacts with Mago-nashi in vivo. Immunohistochemistry reveals that Y14 is predominantly nuclear and colocalizes with oskar mRNA at the posterior pole. We show that, in y14 mutant oocytes, oskar mRNA localization to the posterior pole is specifically affected, while the cytoskeleton appears to be intact. CONCLUSIONS: Our findings indicate that Y14 is part of the oskar mRNA localization complex and that the nuclear shuttling protein Y14 has a specific and direct role in oskar mRNA cytoplasmic localization.


Assuntos
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas Nucleares/metabolismo , Oócitos/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transporte Ativo do Núcleo Celular , Alelos , Animais , Compartimento Celular , Polaridade Celular , Citoesqueleto/ultraestrutura , Drosophila/embriologia , Feminino , Oócitos/ultraestrutura , Técnicas do Sistema de Duplo-Híbrido
4.
Curr Biol ; 7(5): 326-37, 1997 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-9115398

RESUMO

BACKGROUND: The oskar (osk) gene encodes a determinant of posterior identity in Drosophila, and the localization of osk RNA to the pole plasm at the posterior pole of the oocyte is essential for development of the embryo. The mechanisms by which osk RNA is localized are unknown. RESULTS: To study the mechanisms underlying localization of osk RNA, we have injected fluorescently labelled RNA into oocytes at stages 9, 10 and 11. Injected osk RNA localizes to the pole plasm, reproducing localization of the endogenous RNA. In oocytes at stages 10 and 11, the long-range movement of injected osk RNA is promoted by a vigorous, microtubule-dependent cytoplasmic flow, or ooplasmic streaming. Treatment with colchicine, a microtubule-destabilizing drug, inhibits ooplasmic streaming and prevents localization of the RNA from an injection site distal to the posterior pole. If the RNA is injected close to the posterior pole, however, it localizes even in the presence of colchicine. Similarly, in small oocytes, such as stage 9 oocytes, localization of injected osk RNA is insensitive to colchicine. CONCLUSIONS: These results reveal that microtubule-dependent cytoplasmic flows could contribute to the long-range transport of osk RNA, whereas microtubule-independent processes could mediate short-range transport. These results also highlight the role of the osk RNA anchor in the localization process.


Assuntos
Proteínas de Drosophila , Proteínas de Insetos/biossíntese , Oócitos/fisiologia , Animais , Colchicina/farmacologia , Drosophila melanogaster , Genes de Insetos , Proteínas de Insetos/fisiologia , Cinética , Microtúbulos/efeitos dos fármacos , Microtúbulos/fisiologia , Oócitos/citologia , Oócitos/efeitos dos fármacos , Oogênese , RNA/metabolismo , Transcrição Gênica
6.
Methods Enzymol ; 572: 123-57, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27241753

RESUMO

The life of an mRNA is dynamic within a cell. The development of quantitative fluorescent microscopy techniques to image single molecules of RNA has allowed many aspects of the mRNA lifecycle to be directly observed in living cells. Recent advances in live-cell multicolor RNA imaging, however, have now made it possible to investigate RNA metabolism in greater detail. In this chapter, we present an overview of the design and implementation of the translating RNA imaging by coat protein knockoff RNA biosensor, which allows untranslated mRNAs to be distinguished from ones that have undergone a round of translation. The methods required for establishing this system in mammalian cell lines and Drosophila melanogaster oocytes are described here, but the principles may be applied to any experimental system.


Assuntos
Técnicas Biossensoriais/métodos , Drosophila melanogaster/citologia , Microscopia de Fluorescência/métodos , Oócitos/citologia , RNA Mensageiro/análise , Animais , Proteínas do Capsídeo/genética , Células Cultivadas , Drosophila melanogaster/genética , Levivirus/genética , Proteínas Luminescentes/genética , Imagem Molecular/métodos , Oócitos/metabolismo , RNA Mensageiro/genética
7.
Chem Sci ; 7(1): 128-135, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29861973

RESUMO

The simultaneous imaging of different RNA molecules in homogeneous solution is a challenge and requires optimisation to enable unambiguous staining of intracellular RNA targets. Our approach relies on single dye forced intercalation (FIT) probes, in which a visco-sensitive reporter of the thiazole orange (TO) family serves as a surrogate nucleobase and provides enhancements of fluorescence upon hybridisation. Previous FIT probes spanned the cyan and green emission range. Herein, we report for the first time chromophores for FIT probes that emit in the red range (above 600 nm). Such probes are valuable to overcome cellular auto-fluorescent background and enable multiplexed detection. In order to find suitable chromophores, we developed a submonomer approach that facilitated the rapid analysis of different TO family dyes in varied sequence positions. A carboxymethylated 4,4'-methine linked cyanine, which we named quinoline blue (QB), provided exceptional response characteristics at the 605 nm emission maximum. Exceeding previously reported base surrogates, the emission of the QB nucleotide intensified by up to 195-fold upon binding of complementary RNA. Owing to large extinction coefficients and quantum yields (up to ε = 129.000 L mol-1 cm-1 and Φ = 0.47, respectively) QB-FIT probes enable imaging of intracellular mRNA. A mixture of BO-, TO- and QB-containing FIT probes allowed the simultaneous detection of three different RNA targets in homogenous solution. TO- and QB-FIT probes were used to localize oskar mRNA and other polyadenylated mRNA molecules in developing oocytes from Drosphila melanogaster by means of wash-free fluorescent in situ hybridisation and super resolution microscopy (STED).

8.
Trends Cell Biol ; 7(1): 38-9, 1997 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17708897
9.
Nature ; 358(6385): 387-92, 1992 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-1641021

RESUMO

The oskar gene directs germ plasm assembly and controls the number of germ cell precursors formed at the posterior pole of the Drosophila embryo. Mislocalization of oskar RNA to the anterior pole leads to induction of germ cells at the anterior. Of the eight genes necessary for germ cell formation at the posterior, only three, oskar, vasa and tudor, are essential at an ectopic site.


Assuntos
Drosophila melanogaster/embriologia , Células Germinativas , Abdome/embriologia , Animais , Indução Embrionária , Expressão Gênica , Genes , Morfogênese , RNA Mensageiro/metabolismo
10.
Ciba Found Symp ; 182: 282-96; discussion 296-300, 1994.
Artigo em Inglês | MEDLINE | ID: mdl-7530619

RESUMO

In organisms as diverse as frogs, worms and flies germline precursor cells are set aside from the somatic cells early in development. It has been proposed that specific molecules, referred to as germ cell determinants, are deposited in the egg and direct the germ cell fate, but the molecular nature and function of these determinants is not fully understood. Genetic and molecular analysis in Drosophila melanogaster indicates that germ cell determination involves not only the synthesis of specific germ cell factors but also the proper localization and assembly of a morphologically distinct germ plasm. A pathway for germ plasm assembly has been established in which the oskar gene has a central role. The amount of oskar product in the embryo controls the number of germ cells formed and mislocalization of oskar RNA and protein in the egg cell leads to the formation of ectopic germ cells in the embryo. In addition to its role in anchoring germ cell-specific signals, the germ plasm also serves as the source of abdomen-specific signal. Such a colocalization of morphogenetic signals involved in germ cell formation and in the specification of the body axis is not unique to Drosophila but is also found in Caenorhabditis elegans and Xenopus.


Assuntos
Proteínas de Drosophila , Drosophila/fisiologia , Células Germinativas/citologia , Animais , Caenorhabditis elegans/fisiologia , Drosophila/citologia , Drosophila/embriologia , Drosophila/genética , Embrião não Mamífero/química , Embrião não Mamífero/citologia , Regulação da Expressão Gênica no Desenvolvimento , Genes de Insetos , Proteínas/análise , Proteínas/fisiologia , RNA/análise , Análise para Determinação do Sexo , Especificidade da Espécie , Xenopus laevis/fisiologia
11.
Cell ; 66(1): 37-50, 1991 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-2070417

RESUMO

Oskar is one of seven Drosophila maternal-effect genes that are necessary for germline and abdomen formation. We have cloned oskar and show that oskar RNA is localized to the posterior pole of the oocyte when germ plasm forms. This polar distribution of oskar RNA is established during oogenesis in three phases: accumulation in the oocyte, transport toward the posterior, and finally maintenance at the posterior pole of the oocyte. The colocalization of oskar and nanos in wild-type and bicaudal embryos suggests that oskar directs localization of the posterior determinant nanos. We propose that the pole plasm is assembled stepwise and that continued interaction among its components is required for germ cell determination.


Assuntos
Drosophila/genética , Alelos , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Feminino , Regulação da Expressão Gênica , Dados de Sequência Molecular , Mutação , Oócitos/fisiologia , Oogênese , Mapeamento por Restrição
12.
Development ; 124(4): 839-47, 1997 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-9043065

RESUMO

The fushi tarazu pair-rule gene is required for the formation of alternating parasegmental boundaries in the Drosophila embryo. fushi tarazu encodes a homeodomain protein necessary for transcription of the engrailed gene in even-numbered parasegments. Here we report that, within an engrailed enhancer, adjacent and conserved binding sites for the Fushi tarazu protein and a cofactor are each necessary, and together sufficient, for transcriptional activation. Footprinting shows that the cofactor site can be bound specifically by Ftz-F1, a member of the nuclear receptor superfamily. Ftz-F1 and the Fushi tarazu homeodomain bind the sites with 4- to 8-fold cooperativity, suggesting that direct contact between the two proteins may contribute to target recognition. Even parasegmental reporter expression is dependent on Fushi tarazu and maternal Ftz-F1, suggesting that these two proteins are indeed the factors that act upon the two sites in embryos. The two adjacent binding sites are also required for continued activity of the engrailed enhancer after Fushi tarazu protein is no longer detectable, including the period when engrailed, and the enhancer, become dependent upon wingless. We also report the existence of a separate negative regulatory element that apparently responds to odd-skipped.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Drosophila/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Hormônios de Inseto/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Sequência Conservada/genética , Pegada de DNA , Proteínas de Ligação a DNA/farmacologia , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila , Elementos Facilitadores Genéticos/genética , Fatores de Transcrição Fushi Tarazu , Genes de Insetos/genética , Genes Reporter/genética , Hibridização In Situ , Proteínas de Insetos , Receptores Citoplasmáticos e Nucleares , Deleção de Sequência/genética , Fator Esteroidogênico 1 , Fatores de Transcrição/farmacologia , Ativação Transcricional
13.
Genes Dev ; 10(17): 2179-88, 1996 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-8804312

RESUMO

The posterior pole plasm of the Drosophila egg contains the determinants of abdominal and germ-cell fates of the embryo. Pole plasm assembly is induced by oskar RNA localized to the posterior pole of the oocyte. Genetics has revealed three additional genes, staufen, vasa, and tudor, that are also essential for pole plasm formation. Staufen protein is required for both oskar RNA localization and translation. Vasa and Tudor are localized dependent on Oskar protein and are required to accumulate Oskar protein stably at the posterior pole. We have explored interactions between these gene products at the molecular level and find that Oskar interacts directly with Vasa and Staufen, in a yeast two-hybrid assay. These interactions also occur in vitro and are affected by mutations in Oskar that abolish pole plasm formation in vivo. Finally, we show that in the pole plasm, Oskar protein, like Vasa and Tudor, is a component of polar granules, the germ-line-specific RNP structures. These results suggest that the Oskar-Vasa interaction constitutes an initial step in polar granule assembly. In addition, we discuss the possible biological role of the Oskar-Staufen interaction.


Assuntos
Proteínas de Drosophila , Drosophila/embriologia , Drosophila/genética , Proteínas de Membrana Transportadoras , Oócitos/crescimento & desenvolvimento , Proteínas/metabolismo , RNA Helicases , RNA Nucleotidiltransferases/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , RNA Helicases DEAD-box , Regulação da Expressão Gênica no Desenvolvimento , Hormônios de Inseto/genética , Microscopia de Fluorescência , Microscopia Imunoeletrônica , Dados de Sequência Molecular , Biossíntese de Proteínas , Proteínas/genética , Proteínas/imunologia , RNA/metabolismo , RNA Nucleotidiltransferases/genética , RNA Nucleotidiltransferases/imunologia , Proteínas de Ligação a RNA/imunologia , Proteínas de Ligação a RNA/fisiologia
14.
Cell ; 101(5): 511-22, 2000 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-10850493

RESUMO

Morphogenesis and cell differentiation in multicellular organisms often require accurate control of cell divisions. We show that a novel cell cycle regulator, tribbles, is critical for this control during Drosophila development. During oogenesis, the level of tribbles affects the number of germ cell divisions as well as oocyte determination. The mesoderm anlage enters mitosis prematurely in tribbles mutant embryos, leading to gastrulation defects. We show that Tribbles acts by specifically inducing degradation of the CDC25 mitotic activators String and Twine via the proteosome pathway. By regulating CDC25, Tribbles serves to coordinate entry into mitosis with morphogenesis and cell fate determination.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/fisiologia , Proteínas de Drosophila , Drosophila/fisiologia , Proteínas de Insetos/metabolismo , Proteínas de Insetos/fisiologia , Mitose/fisiologia , Fosfoproteínas Fosfatases/metabolismo , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Fosfatases , Animais , Proteínas de Ciclo Celular/genética , Drosophila/embriologia , Feminino , Fase G2 , Genes de Insetos , Proteínas de Insetos/genética , Morfogênese , Ovário/embriologia , Transfecção , Fosfatases cdc25/metabolismo
15.
Development ; 127(5): 1063-8, 2000 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-10662645

RESUMO

The coupled regulation of oskar mRNA localization and translation in time and space is critical for correct anteroposterior patterning of the Drosophila embryo. Localization-dependent translation of oskar mRNA, a mechanism whereby oskar RNA localized at the posterior of the oocyte is selectively translated and the unlocalized RNA remains in a translationally repressed state, ensures that Oskar activity is present exclusively at the posterior pole. Genetic experiments indicate that translational repression involves the binding of Bruno protein to multiple sites, the Bruno Response Elements (BRE), in the 3' untranslated region (UTR) of oskar mRNA. We have established a cell-free translation system derived from Drosophila ovaries, which faithfully reproduces critical features of mRNA translation in vivo, namely cap structure and poly(A) tail dependence. We show that this ovary extract, containing endogenous Bruno, is able to recapitulate oskar mRNA regulation in a BRE-dependent way. Thus, the assembly of a ribonucleoprotein (RNP) complex leading to the translationally repressed state occurs in vitro. Moreover, we show that a Drosophila embryo extract lacking Bruno efficiently translates oskar mRNA. Addition of recombinant Bruno to this extract establishes the repressed state in a BRE-dependent manner, providing a direct biochemical demonstration of the critical role of Bruno in oskar mRNA translation. The approach that we describe opens new avenues to investigate translational regulation in Drosophila oogenesis at a biochemical level.


Assuntos
Proteínas de Drosophila , Drosophila/embriologia , Proteínas de Insetos/genética , Oócitos/fisiologia , Ovário/fisiologia , Biossíntese de Proteínas , Proteínas de Ligação a RNA/metabolismo , Animais , Sistema Livre de Células , Feminino , RNA Mensageiro/genética , Proteínas Recombinantes/metabolismo , Transcrição Gênica
16.
Genes Dev ; 14(2): 224-31, 2000 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-10652276

RESUMO

Differentiation of the embryonic termini in Drosophila depends on signaling by the Tor RTK, which induces terminal gene expression by inactivating at the embryonic poles a uniformly distributed repressor activity that involves the Gro corepressor. Here, we identify a new gene, cic, that acts as a repressor of terminal genes regulated by the Tor pathway. cic also mediates repression along the dorsoventral axis, a process that requires the Dorsal morphogen and Gro, and which is also inhibited by Tor signaling at the termini. cic encodes an HMG-box transcription factor that interacts with Gro in vitro. We present evidence that Tor signaling regulates terminal patterning by inactivating Cic at the embryo poles. cic has been evolutionarily conserved, suggesting that Cic-like proteins may act as repressors regulated by RTK signaling in other organisms.


Assuntos
Padronização Corporal/fisiologia , Proteínas de Drosophila , Drosophila melanogaster/genética , Receptores Proteína Tirosina Quinases/fisiologia , Proteínas Repressoras , Transdução de Sinais/fisiologia , Supressão Genética , Fatores de Transcrição/fisiologia , Sequência de Aminoácidos , Animais , Padronização Corporal/genética , Sequência Conservada , Drosophila melanogaster/embriologia , Drosophila melanogaster/crescimento & desenvolvimento , Evolução Molecular , Feminino , Proteínas HMGB , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Proteínas de Grupo de Alta Mobilidade/fisiologia , Humanos , Dados de Sequência Molecular , Mutação/genética , Processamento de Proteína Pós-Traducional , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/isolamento & purificação , Fatores de Transcrição/metabolismo
17.
Development ; 125(9): 1723-32, 1998 May.
Artigo em Inglês | MEDLINE | ID: mdl-9521910

RESUMO

Vasa, a DEAD box mRNA helicase similar to eIF4A, is involved in pole plasm assembly in the Drosophila oocyte and appears to regulate translation of oskar and nanos mRNAs. However, several vasa alleles exhibit a wide range of early oogenesis phenotypes. Here we report a detailed analysis of Vasa function during early oogenesis using novel as well as previously identified hypomorphic vasa alleles. We find that vasa is required for the establishment of both anterior-posterior and dorsal-ventral polarity of the oocyte. The polarity defects of vasa mutants appear to be caused by a reduction in the amount of Gurken protein at stages of oogenesis critical for the establishment of polarity. Vasa is required for translation of gurken mRNA during early oogenesis and for achieving wild-type levels of gurken mRNA expression later in oogenesis. A variety of early oogenesis phenotypes observed in vasa ovaries, which cannot be attributed to the defect in gurken expression, suggest that vasa also affects expression of other mRNAs.


Assuntos
Polaridade Celular/fisiologia , Proteínas de Drosophila , Drosophila/citologia , Proteínas de Insetos/genética , Oócitos/citologia , RNA Helicases , RNA Nucleotidiltransferases/fisiologia , Fator de Crescimento Transformador alfa , Fatores de Crescimento Transformadores/genética , Animais , RNA Helicases DEAD-box , Drosophila/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Mutação , Oócitos/química , Oogênese/genética , Ovário/química , Biossíntese de Proteínas/fisiologia , RNA Nucleotidiltransferases/análise , RNA Mensageiro/metabolismo
18.
Nature ; 313(6005): 798-801, 1985.
Artigo em Inglês | MEDLINE | ID: mdl-3919308

RESUMO

The introns separating the variable and constant regions of active immunoglobulin genes contain tissue-specific transcriptional enhancer elements, DNA segments which act in cis in an orientation- and distance-independent (up to a few kilobases (kb)) manner to enhance transcription initiation at adjacent promoters. The immunoglobulin heavy-chain enhancer is active only in lymphoid cells: in transfection assays it is capable of controlling in cis transcription from the simian virus 40 (SV40) T-antigen, rabbit beta-globin and immunoglobulin gene promoters up to at least 2 kb away. Genetic deletion analysis suggests that a region of as few as 140 base pairs (bp) is sufficient for the enhancement effect. These functional characteristics and DNA sequences are conserved between mouse and man. However, it is not known whether tissue-specific proteins bind to the enhancer. Proteins that interact with DNA at specific sequences can prevent or enhance the reactions of individual guanines or adenines with dimethyl sulphate (DMS), and this property has been used to display the DNA contacts of various regulatory proteins. Here we apply this DMS strategy in experiments involving single-copy genes within intact mammalian nuclei using genomic sequencing.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Elementos Facilitadores Genéticos , Genes Reguladores , Cadeias Pesadas de Imunoglobulinas/genética , Animais , Sequência de Bases , Linhagem Celular , Núcleo Celular/metabolismo , Regulação da Expressão Gênica , Guanina , Células L , Camundongos , Plasmocitoma/genética , Ligação Proteica , Ésteres do Ácido Sulfúrico
19.
Nature ; 377(6549): 524-7, 1995 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-7566149

RESUMO

The localization of oskar (osk) RNA to the posterior pole of the developing fruit fly (Drosophila) oocyte induces the assembly of pole plasm, causing development of the abdomen and germ line. Failure to localize oskar RNA results in embryos that lack abdomen and germ cells. Conversely, mis-targeting of oskar RNA to the anterior of the oocyte causes formation of ectopic abdomen and germ cells at the anterior pole. Maternal mutants that have reduced pole plasm activity produce sterile adults with normal abdominal development, suggesting that germ cells are more sensitive than abdomen to defects in pole plasm assembly. Thus mutations in genes that reduce oskar RNA localization or activity can be recovered as viable sterile adults. In a screen for mutants defective in germ cell formation, we isolated nine alleles of the tropomyosin II gene. Here we show that mutations in tropomyosin II (TmII) virtually abolish oskar RNA localization to the posterior pole, suggesting an involvement of the actin network in oskar RNA localization.


Assuntos
Proteínas de Drosophila , Drosophila/embriologia , Proteínas/metabolismo , RNA Mensageiro/metabolismo , Tropomiosina/fisiologia , Actinas/metabolismo , Animais , Polaridade Celular , Citoplasma/metabolismo , Drosophila/metabolismo , Feminino , Mutação , Oócitos/metabolismo , Proteínas/genética , Proteínas de Ligação a RNA/metabolismo , Tropomiosina/genética
20.
Development ; 121(11): 3723-32, 1995 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-8582284

RESUMO

At the posterior pole of the Drosophila oocyte, oskar induces a tightly localized assembly of pole plasm. This spatial restriction of oskar activity has been thought to be achieved by the localization of oskar mRNA, since mislocalization of the RNA to the anterior induces anterior pole plasm. However, ectopic pole plasm does not form in mutant ovaries where oskar mRNA is not localized, suggesting that the unlocalized mRNA is inactive. As a first step towards understanding how oskar activity is restricted to the posterior pole, we analyzed oskar translation in wild type and mutants. We show that the targeting of oskar activity to the posterior pole involves two steps of spatial restriction, cytoskeleton-dependent localization of the mRNA and localization-dependent translation. Furthermore, our experiments demonstrate that two isoforms of Oskar protein are produced by alternative start codon usage. The short isoform, which is translated from the second in-frame AUG of the mRNA, has full oskar activity. Finally, we show that when oskar RNA is localized, accumulation of Oskar protein requires the functions of vasa and tudor, as well as oskar itself, suggesting a positive feedback mechanism in the induction of pole plasm by oskar.


Assuntos
Citoplasma/fisiologia , Proteínas de Drosophila , Drosophila/fisiologia , Genes de Insetos , Proteínas de Membrana Transportadoras , Oócitos/fisiologia , Biossíntese de Proteínas , Proteínas/genética , RNA Helicases , Animais , Sequência de Bases , Western Blotting , Códon , Citoesqueleto/fisiologia , RNA Helicases DEAD-box , Drosophila/embriologia , Drosophila/genética , Retroalimentação , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Hormônios de Inseto/genética , Isomerismo , Dados de Sequência Molecular , Morfogênese/genética , Oogênese/genética , Fases de Leitura Aberta , Mutação Puntual , Proteínas/fisiologia , RNA Nucleotidiltransferases/genética , RNA Mensageiro/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA