Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Waste Manag ; 186: 23-34, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38851034

RESUMO

To explore a sustainable sophorolipid production, several hydrolysates from agricultural byproducts, such as wheat feed, rapeseed meal, coconut waste and palm waste were used as nitrogen sources. The four hydrolysates overperformed the controls after 168 h of fermentation using Starmerella bombicola ATCC 22214. Wheat feed and coconut waste hydrolysates were the most promising feedstocks presenting a linear relationship between yeast growth and diacetylated lactonic C18:1 production at total nitrogen concentrations below 1.5 g/L (R2 = 0.90 and 0.83, respectively). At 0.31 g/L total nitrogen, wheat feed hydrolysate achieved the highest production, yielding 72.20 ± 1.53 g/L of sophorolipid crude extract and 60.05 ± 0.56 g/L of diacetylated lactonic C18:1 at shake flask scale with productivities of 0.43 and 0.36 g/L/h, respectively. Results were confirmed in a 2-L bioreactor increasing 15 % diacetylated lactonic C18:1 production. Moreover, wheat feed hydrolysate supplemented only with a hydrophobic carbon source was able to produce mainly diacetylated lactonic C18:1 congener (88.5 % wt.), suggesting that the composition of the hydrolysate significantly influences the congeners profile. Overall, this study provides valuable insights into agricultural byproduct hydrolysates as potential nitrogen feedstocks for sophorolipid production and their further application on industrial biotechnology.


Assuntos
Fermentação , Nitrogênio , Nitrogênio/metabolismo , Reatores Biológicos , Saccharomycetales/metabolismo , Triticum/metabolismo , Ácidos Oleicos
2.
Front Bioeng Biotechnol ; 11: 1252733, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38249797

RESUMO

The use of alternative feedstocks such as industrial or food waste is being explored for the sustainable production of sophorolipids (SLs). Microbial biosurfactants are mainly produced via submerged fermentation (SmF); however, solid-state fermentation (SSF) seems to be a promising alternative for using solid waste or byproducts that could not be exploited by SmF. Applying the advantages that SSF offers and with the aim of revalorizing industrial organic waste, the impact of carbon and nitrogen sources on the relationship between yeast growth and SL production was analyzed. The laboratory-scale system used winterization oil cake as the solid waste for a hydrophobic carbon source. Pure hydrophilic carbon (glucose) and nitrogen (urea) sources were used in a Box-Behnken statistical design of experiments at different ratios by applying the response surface methodology. Optimal conditions to maximize the production and productivity of diacetylated lactonic C18:1 were a glucose:nitrogen ratio of 181.7:1.43 (w w-1 based on the initial dry matter) at a fermentation time of 100 h, reaching 0.54 total gram of diacetylated lactonic C18:1 with a yield of 0.047 g per gram of initial dry mass. Moreover, time course fermentation under optimized conditions increased the SL crude extract and diacetylated lactonic C8:1 production by 22% and 30%, respectively, when compared to reference conditions. After optimization, industrial wastes were used to substitute pure substrates. Different industrial sludges, OFMSW hydrolysate, and sweet candy industry wastewater provided nitrogen, hydrophilic carbon, and micronutrients, respectively, allowing their use as alternative feedstocks. Sweet candy industry wastewater and cosmetic sludge are potential hydrophilic carbon and nitrogen sources, respectively, for sophorolipid production, achieving yields of approximately 70% when compared to the control group.

3.
Bioengineered ; 13(5): 12365-12391, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35674010

RESUMO

Microbial biosurfactants are low-molecular-weight surface-active compounds of high industrial interest owing to their chemical properties and stability under several environmental conditions. The chemistry of a biosurfactant and its production cost are defined by the selection of the producer microorganism, type of substrate, and purification strategy. Recently, biosurfactants have been applied to solve or contribute to solving some environmental problems, with this being their main field of application. The most referenced studies are based on the bioremediation of contaminated soils with recalcitrant pollutants, such as hydrocarbons or heavy metals. In the case of heavy metals, biosurfactants function as chelating agents owing to their binding capacity. However, the mechanism by which biosurfactants typically act in an environmental field is focused on their ability to reduce the surface tension, thus facilitating the emulsification and solubilization of certain pollutants (in-situ biostimulation and/or bioaugmentation). Moreover, despite the low toxicity of biosurfactants, they can also act as biocidal agents at certain doses, mainly at higher concentrations than their critical micellar concentration. More recently, biosurfactant production using alternative substrates, such as several types of organic waste and solid-state fermentation, has increased its applicability and research interest in a circular economy context. In this review, the most recent research publications on the use of biosurfactants in environmental applications as an alternative to conventional chemical surfactants are summarized and analyzed. Novel strategies using biosurfactants as agricultural and biocidal agents are also presented in this paper.


Assuntos
Poluentes Ambientais , Metais Pesados , Poluentes do Solo , Biodegradação Ambiental , Fermentação , Poluentes do Solo/análise , Tensoativos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA