Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 630(8017): 643-647, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38898295

RESUMO

Electrified solid-liquid interfaces (ESLIs) play a key role in various electrochemical processes relevant to energy1-5, biology6 and geochemistry7. The electron and mass transport at the electrified interfaces may result in structural modifications that markedly influence the reaction pathways. For example, electrocatalyst surface restructuring during reactions can substantially affect the catalysis mechanisms and reaction products1-3. Despite its importance, direct probing the atomic dynamics of solid-liquid interfaces under electric biasing is challenging owing to the nature of being buried in liquid electrolytes and the limited spatial resolution of current techniques for in situ imaging through liquids. Here, with our development of advanced polymer electrochemical liquid cells for transmission electron microscopy (TEM), we are able to directly monitor the atomic dynamics of ESLIs during copper (Cu)-catalysed CO2 electroreduction reactions (CO2ERs). Our observation reveals a fluctuating liquid-like amorphous interphase. It undergoes reversible crystalline-amorphous structural transformations and flows along the electrified Cu surface, thus mediating the crystalline Cu surface restructuring and mass loss through the interphase layer. The combination of real-time observation and theoretical calculations unveils an amorphization-mediated restructuring mechanism resulting from charge-activated surface reactions with the electrolyte. Our results open many opportunities to explore the atomic dynamics and its impact in broad systems involving ESLIs by taking advantage of the in situ imaging capability.

2.
Nature ; 624(7992): 564-569, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38123807

RESUMO

Medium- and high-entropy alloys (M/HEAs) mix several principal elements with near-equiatomic composition and represent a model-shift strategy for designing previously unknown materials in metallurgy1-8, catalysis9-14 and other fields15-18. One of the core hypotheses of M/HEAs is lattice distortion5,19,20, which has been investigated by different numerical and experimental techniques21-26. However, determining the three-dimensional (3D) lattice distortion in M/HEAs remains a challenge. Moreover, the presumed random elemental mixing in M/HEAs has been questioned by X-ray and neutron studies27, atomistic simulations28-30, energy dispersive spectroscopy31,32 and electron diffraction33,34, which suggest the existence of local chemical order in M/HEAs. However, direct experimental observation of the 3D local chemical order has been difficult because energy dispersive spectroscopy integrates the composition of atomic columns along the zone axes7,32,34 and diffuse electron reflections may originate from planar defects instead of local chemical order35. Here we determine the 3D atomic positions of M/HEA nanoparticles using atomic electron tomography36 and quantitatively characterize the local lattice distortion, strain tensor, twin boundaries, dislocation cores and chemical short-range order (CSRO). We find that the high-entropy alloys have larger local lattice distortion and more heterogeneous strain than the medium-entropy alloys and that strain is correlated to CSRO. We also observe CSRO-mediated twinning in the medium-entropy alloys, that is, twinning occurs in energetically unfavoured CSRO regions but not in energetically favoured CSRO ones, which represents, to our knowledge, the first experimental observation of correlating local chemical order with structural defects in any material. We expect that this work will not only expand our fundamental understanding of this important class of materials but also provide the foundation for tailoring M/HEA properties through engineering lattice distortion and local chemical order.

3.
Annu Rev Phys Chem ; 75(1): 483-508, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38941528

RESUMO

Crystallographic analysis relies on the scattering of quanta from arrays of atoms that populate a repeating lattice. While large crystals built of lattices that appear ideal are sought after by crystallographers, imperfections are the norm for molecular crystals. Additionally, advanced X-ray and electron diffraction techniques, used for crystallography, have opened the possibility of interrogating micro- and nanoscale crystals, with edges only millions or even thousands of molecules long. These crystals exist in a size regime that approximates the lower bounds for traditional models of crystal nonuniformity and imperfection. Accordingly, data generated by diffraction from both X-rays and electrons show increased complexity and are more challenging to conventionally model. New approaches in serial crystallography and spatially resolved electron diffraction mapping are changing this paradigm by better accounting for variability within and between crystals. The intersection of these methods presents an opportunity for a more comprehensive understanding of the structure and properties of nanocrystalline materials.

4.
Sci Adv ; 10(25): eadn6426, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38896628

RESUMO

Phase transformations have been a prominent topic of study for both fundamental and applied science. Solid-liquid reaction-induced phase transformations can be hard to characterize, and the transformation mechanisms are often not fully understood. Here, we report reversible phase transformations between a metal (Pb) nanocrystal and a viscous liquid-like phase unveiled by in situ liquid cell transmission electron microscopy. The reversible phase transformations are obtained by modulating the electron current density (between 1000 and 3000 electrons Å-2 s-1). The metal-organic viscous liquid-like phase exhibits short-range ordering with a preferred Pb-Pb distance of 0.5 nm. Assisted by density functional theory and molecular dynamics calculations, we show that the viscous liquid-like phase results from the reactions of Pb with the CH3O fragments from the triethylene glycol solution under electron beam irradiation. Such reversible phase transformations may find broad implementations.

5.
ACS Catal ; 14(7): 4999-5005, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38601777

RESUMO

Isolated platinum(II) ions anchored at acid sites in the pores of zeolite HZSM-5, initially introduced by aqueous ion exchange, were reduced to form platinum nanoparticles that are stably dispersed with a narrow size distribution (1.3 ± 0.4 nm in average diameter). The nanoparticles were confined in reservoirs within the porous zeolite particles, as shown by electron beam tomography and the shape-selective catalysis of alkene hydrogenation. When the nanoparticles were oxidatively fragmented in dry air at elevated temperature, platinum returned to its initial in-pore atomically dispersed state with a charge of +2, as shown previously by X-ray absorption spectroscopy. The results determine the conditions under which platinum is retained within the pores of HZSM-5 particles during redox cycles that are characteristic of the reductive conditions of catalyst operation and the oxidative conditions of catalyst regeneration.

6.
Commun Chem ; 7(1): 4, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172567

RESUMO

In situ structures of Platinum (Pt) nanoparticles (NPs) can be determined with graphene liquid cell transmission electron microscopy. Atomic-scale three-dimensional structural information about their physiochemical properties in solution is critical for understanding their chemical function. We here analyze eight atomic-resolution maps of small (<3 nm) colloidal Pt NPs. Their structures are composed of an ordered crystalline core surrounded by surface atoms with comparatively high mobility. 3D reconstructions calculated from cumulative doses of 8500 and 17,000 electrons/pixel, respectively, are characterized in terms of loss of atomic densities and atomic displacements. Less than 5% of the total number of atoms are lost due to dissolution or knock-on damage in five of the structures analyzed, whereas 10-16% are lost in the remaining three. Less than 5% of the atomic positions are displaced due to the increased electron irradiation in all structures. The surface dynamics will play a critical role in the diverse catalytic function of Pt NPs and must be considered in efforts to model Pt NP function computationally.

7.
Nat Commun ; 15(1): 3555, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38670945

RESUMO

Measuring the three-dimensional (3D) distribution of chemistry in nanoscale matter is a longstanding challenge for metrological science. The inelastic scattering events required for 3D chemical imaging are too rare, requiring high beam exposure that destroys the specimen before an experiment is completed. Even larger doses are required to achieve high resolution. Thus, chemical mapping in 3D has been unachievable except at lower resolution with the most radiation-hard materials. Here, high-resolution 3D chemical imaging is achieved near or below one-nanometer resolution in an Au-Fe3O4 metamaterial within an organic ligand matrix, Co3O4-Mn3O4 core-shell nanocrystals, and ZnS-Cu0.64S0.36 nanomaterial using fused multi-modal electron tomography. Multi-modal data fusion enables high-resolution chemical tomography often with 99% less dose by linking information encoded within both elastic (HAADF) and inelastic (EDX/EELS) signals. We thus demonstrate that sub-nanometer 3D resolution of chemistry is measurable for a broad class of geometrically and compositionally complex materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA