Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Cancer Res ; 7(4): 601-13, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19372588

RESUMO

Phosphoinositide 3-kinase (PI3K)/protein kinase B/Akt and Ras/mitogen-activated protein kinase pathways are often constitutively activated in melanoma and have thus been considered as promising drug targets. Exposure of melanoma cells to NVP-BAG956, NVP-BBD130, and NVP-BEZ235, a series of novel, potent, and stable dual PI3K/mammalian target of rapamycin (mTOR) inhibitors, resulted in complete G1 growth arrest, reduction of cyclin D1, and increased levels of p27(KIP1), but negligible apoptosis. In contrast, treatment of melanoma with the pan-class I PI3K inhibitor ZSTK474 or the mTORC1 inhibitor rapamycin resulted only in minor reduction of cell proliferation. In a syngeneic B16 mouse melanoma tumor model, orally administered NVP-BBD130 and NVP-BEZ235 efficiently attenuated tumor growth at primary and lymph node metastatic sites with no obvious toxicity. Metastatic melanoma in inhibitor-treated mice displayed reduced numbers of proliferating and significantly smaller tumor cells. In addition, neovascularization was blocked and tumoral necrosis increased when compared with vehicle-treated mice. In conclusion, compounds targeting PI3K and mTOR simultaneously were advantageous to attenuate melanoma growth and they develop their potential by targeting tumor growth directly, and indirectly via their interference with angiogenesis. Based on the above results, NVP-BEZ235, which has entered phase I/II clinical trials in patients with advanced solid tumors, has a potential in metastatic melanoma therapy.


Assuntos
Imidazóis/farmacologia , Melanoma Experimental/tratamento farmacológico , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Quinases/metabolismo , Quinolinas/farmacologia , Sirolimo/farmacologia , Triazinas/farmacologia , Proteínas Quinases Dependentes de 3-Fosfoinositídeo , Administração Oral , Animais , Antibióticos Antineoplásicos/farmacologia , Apoptose/fisiologia , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/metabolismo , Humanos , Immunoblotting , Técnicas Imunoenzimáticas , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico , Serina-Treonina Quinases TOR , Células Tumorais Cultivadas
2.
Immunology ; 128(3): 351-9, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20067535

RESUMO

Maintenance of intestinal epithelial barrier function is of vital importance in preventing uncontrolled influx of antigens and the potentially ensuing inflammatory disorders. Intestinal intraepithelial lymphocytes (IEL) are in intimate contact with epithelial cells and may critically regulate the epithelial barrier integrity. While a preserving impact has been ascribed to the T-cell receptor (TCR)-gammadelta subset of IEL, IEL have also been shown to attenuate the barrier function. The present study sought to clarify the effects of IEL by specifically investigating the influence of the TCR-alphabeta CD8alphabeta and TCR-alphabeta CD8alphaalpha subsets of IEL on the intestinal epithelial barrier integrity. To this end, an in vitro coculture system of the murine intestinal crypt-derived cell-line mIC(cl2) and syngeneic ex vivo isolated IEL was employed. Epithelial integrity was assessed by analysis of transepithelial resistance (TER) and paracellular flux of fluorescein isothiocyanate-conjugated (FITC-) dextran. The TCR-alphabeta CD8alphaalpha IEL and resting TCR-alphabeta CD8alphabeta IEL did not affect TER of mIC(cl2) or flux of FITC-dextran. In contrast, activated TCR-alphabeta CD8alphabeta IEL clearly disrupted the integrity of the mIC(cl2) monolayer. No disrupting effect was seen with activated TCR-alphabeta CD8alphabeta IEL from interferon-gamma knockout mice. These findings demonstrate that secretion of interferon-gamma by activated TCR-alphabeta CD8alphabeta IEL is strictly required and also sufficient for disrupting the intestinal epithelial barrier function.


Assuntos
Permeabilidade da Membrana Celular , Mucosa Intestinal/fisiologia , Linfócitos T/metabolismo , Animais , Antígenos CD8/biossíntese , Linhagem Celular , Técnicas de Cocultura , Dextranos/metabolismo , Impedância Elétrica , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/metabolismo , Interferon gama/genética , Ativação Linfocitária , Camundongos , Camundongos Knockout , Receptores de Antígenos de Linfócitos T alfa-beta/biossíntese , Linfócitos T/imunologia
3.
Chem Biol ; 20(4): 549-57, 2013 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-23601644

RESUMO

Cell activation initiated by receptor ligands or oncogenes triggers complex and convoluted intracellular signaling. Techniques initiating signals at defined starting points and cellular locations are attractive to elucidate the output of selected pathways. Here, we present the development and validation of a protein heterodimerization system based on small molecules cross-linking fusion proteins derived from HaloTags and SNAP-tags. Chemical dimerizers of HaloTag and SNAP-tag (HaXS) show excellent selectivity and have been optimized for intracellular reactivity. HaXS force protein-protein interactions and can translocate proteins to various cellular compartments. Due to the covalent nature of the HaloTag-HaXS-SNAP-tag complex, intracellular dimerization can be easily monitored. First applications include protein targeting to cytoskeleton, to the plasma membrane, to lysosomes, the initiation of the PI3K/mTOR pathway, and multiplexed protein complex formation in combination with the rapamycin dimerization system.


Assuntos
Reagentes de Ligações Cruzadas/metabolismo , Proteínas/metabolismo , Alquil e Aril Transferases/metabolismo , Animais , Linhagem Celular , Reagentes de Ligações Cruzadas/química , Citoesqueleto/metabolismo , Dimerização , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Células HeLa , Humanos , Hidrolases/metabolismo , Camundongos , Células NIH 3T3 , Fosfatidilinositol 3-Quinases/química , Fosfatidilinositol 3-Quinases/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas/química , Proteínas/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Transdução de Sinais , Especificidade por Substrato , Serina-Treonina Quinases TOR/química , Serina-Treonina Quinases TOR/metabolismo
4.
J Immunol Methods ; 344(1): 26-34, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19278662

RESUMO

Intestinal intraepithelial lymphocytes (IEL) are specialized subsets of T cells with distinct functional capacities. While some IEL subsets are circulating, others such as CD8alphaalpha TCRalphabeta IEL are believed to represent non-circulating resident T cell subsets [Sim, G.K., Intraepithelial lymphocytes and the immune system. Adv. Immunol., 1995. 58: 297-343.]. Current methods to obtain enriched preparations of intraepithelial lymphocytes are mostly based on Percoll density gradient or magnetic bead-based technologies [Lundqvist, C., et al., Isolation of functionally active intraepithelial lymphocytes and enterocytes from human small and large intestine. J. Immunol. Methods, 1992. 152(2): 253-263.]. However, these techniques are hampered by a generally low yield of isolated cells, and potential artifacts due to the interference of the isolation procedure with subsequent functional assays, in particular, when antibodies against cell surface markers are required. Here we describe a new method for obtaining relatively pure populations of intestinal IEL (55-75%) at a high yield (>85%) by elutriation centrifugation. This technique is equally suited for the isolation and enrichment of intraepithelial lymphocytes of both mouse and human origin. Time requirements for fractionating cell suspensions by elutriation centrifugation are comparable to Percoll-, or MACS-based isolation procedures. Hence, the substantially higher yield and the consistent robust enrichment for intraepithelial lymphocytes, together with the gentle treatment of the cells during elutriation that does not interfere with subsequent functional assays, are important aspects that are in favor of using this elegant technology to obtain unmanipulated, unbiased populations of intestinal intraepithelial lymphocytes, and, if desired, also of pure epithelial cells.


Assuntos
Separação Celular/métodos , Centrifugação/métodos , Mucosa Intestinal/imunologia , Linfócitos/imunologia , Animais , Sobrevivência Celular , Humanos , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL
5.
Infect Immun ; 74(7): 3890-6, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16790761

RESUMO

Bacterial meningitis is characterized by an inflammatory reaction to the invading pathogens that can ultimately lead to sensorineural hearing loss, permanent brain injury, or death. The matrix metalloproteinases (MMPs) and tumor necrosis factor alpha-converting enzyme (TACE) are key mediators that promote inflammation, blood-brain barrier disruption, and brain injury in bacterial meningitis. Doxycycline is a clinically used antibiotic with anti-inflammatory effects that lead to reduced cytokine release and the inhibition of MMPs. Here, doxycycline inhibited TACE with a 50% inhibitory dose of 74 microM in vitro and reduced the amount of tumor necrosis factor alpha released into the cerebrospinal fluid by 90% in vivo. In an infant rat model of pneumococcal meningitis, a single dose of doxycycline (30 mg/kg) given as adjuvant therapy in addition to ceftriaxone 18 h after infection significantly reduced the mortality, the blood-brain barrier disruption, and the extent of cortical brain injury. Adjuvant doxycycline (30 mg/kg given subcutaneously once daily for 4 days) also attenuated hearing loss, as assessed by auditory brainstem response audiometry, and neuronal death in the cochlear spiral ganglion at 3 weeks after infection. Thus, doxycycline, probably as a result of its anti-inflammatory properties, had broad beneficial effects in the brain and the cochlea and improved survival in this model of pneumococcal meningitis in infant rats.


Assuntos
Antibacterianos/farmacologia , Encéfalo/microbiologia , Encéfalo/patologia , Cóclea/microbiologia , Cóclea/patologia , Doxiciclina/farmacologia , Meningite Pneumocócica/tratamento farmacológico , Meningite Pneumocócica/mortalidade , Animais , Antibacterianos/farmacocinética , Anti-Inflamatórios não Esteroides/farmacocinética , Anti-Inflamatórios não Esteroides/farmacologia , Ceftriaxona/antagonistas & inibidores , Ceftriaxona/farmacologia , Doxiciclina/farmacocinética , Feminino , Injeções Subcutâneas , Ratos , Ratos Wistar , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA