Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 578(7796): 563-567, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32103196

RESUMO

Aromaticity and antiaromaticity, as defined by Hückel's rule, are key ideas in organic chemistry, and are both exemplified in biphenylene1-3-a molecule that consists of two benzene rings joined by a four-membered ring at its core. Biphenylene analogues in which one of the benzene rings has been replaced by a different (4n + 2) π-electron system have so far been associated only with organic compounds4,5. In addition, efforts to prepare a zirconabiphenylene compound resulted in the isolation of a bis(alkyne) zirconocene complex instead6. Here we report the synthesis and characterization of, to our knowledge, the first 2-metallabiphenylene compounds. Single-crystal X-ray diffraction studies reveal that these complexes have nearly planar, 11-membered metallatricycles with metrical parameters that compare well with those reported for biphenylene. Nuclear magnetic resonance spectroscopy, in addition to nucleus-independent chemical shift calculations, provides evidence that these complexes contain an antiaromatic cyclobutadiene ring and an aromatic benzene ring. Furthermore, spectroscopic evidence, Kohn-Sham molecular orbital compositions and natural bond orbital calculations suggest covalency and delocalization of the uranium f2 electrons with the carbon-containing ligand.

2.
Inorg Chem ; 63(4): 1938-1946, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38232376

RESUMO

The production of ceramics from uranium coordination compounds can be achieved through thermal processing if an excess amount of the desired atoms (i.e., C or N), or reactive gaseous products (e.g., methane or nitrogen oxide) is made available to the reactive uranium metal core via decomposition/fragmentation of the surrounding ligand groups. Here, computational thermodynamic approaches were utilized to identify the temperatures necessary to produce uranium metal from some starting compounds─UI4(TMEDA)2, UCl4(TMEDA)2, UCl3(pyridine)x, and UI3(pyridine)4. Experimentally, precursors were irradiated by a laser under various gaseous environments (argon, nitrogen, and methane) creating extreme reaction conditions (i.e., fast heating, high temperature profile >2000 °C, and rapid cooling). Despite the fast dynamics associated with laser irradiation, the central uranium atom reacted with the thermal decomposition products of the ligands yielding uranium ceramics. Residual gas analysis identified vaporized products from the laser irradiation, and the final ceramic products were characterized by powder X-ray diffraction. The composition of the uranium precursor as well as the gaseous environment had a direct impact on the production of the final phases.

3.
Dalton Trans ; 47(7): 2138-2142, 2018 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-29363696

RESUMO

Exploration of (N3N)ZrNMe2 (1, N3N = N(CH2CH2NSiMe3)33-) as a catalyst for the cross-dehydrocoupling or heterodehydrocoupling of silanes and amines suggested silylene reactivity. Further studies of the catalysis and stoichiometric modeling reactions hint at α-silylene elimination as the pivotal mechanistic step, which expands the 3p elements known to engage in this catalysis and provides a new strategy for the catalytic generation of low-valent fragments.

4.
Chem Commun (Camb) ; 47(42): 11769-71, 2011 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-21952268

RESUMO

Reaction of (N(3)N)ZrX complexes (X = amido, Cl(-), CH(3)(-)) with carbodiimide substrates results in insertion into an Zr-N bond of the triamidoamine ligand rather than the Zr-X bond as has been observed for related (N(3)N)ZrX complexes (X = PR(2)(-), AsR(2)(-)).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA