Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Phylogenet Evol ; 160: 107115, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33609713

RESUMO

Dragonflies and damselflies are a charismatic, medium-sized insect order (~6300 species) with a unique potential to approach comparative research questions. Their taxonomy and many ecological traits for a large fraction of extant species are relatively well understood. However, until now, the lack of a large-scale phylogeny based on high throughput data with the potential to connect both perspectives has precluded comparative evolutionary questions for these insects. Here, we provide an ordinal hypothesis of classification based on anchored hybrid enrichment using a total of 136 species representing 46 of the 48 families or incertae sedis, and a total of 478 target loci. Our analyses recovered the monophyly for all three suborders: Anisoptera, Anisozygoptera and Zygoptera. Although the backbone of the topology was reinforced and showed the highest support values to date, our genomic data was unable to stronglyresolve portions of the topology. In addition, a quartet sampling approach highlights the potential evolutionary scenarios that may have shaped evolutionary phylogeny (e.g., incomplete lineage sorting and introgression) of this taxon. Finally, in light of our phylogenomic reconstruction and previous morphological and molecular information we proposed an updated odonate classification and define five new families (Amanipodagrionidae fam. nov., Mesagrionidae fam. nov., Mesopodagrionidae fam. nov., Priscagrionidae fam. nov., Protolestidae fam. nov.) and reinstate another two (Rhipidolestidae stat. res., Tatocnemididae stat. res.). Additionally, we feature the problematic taxonomic groupings for examination in future studies to improve our current phylogenetic hypothesis.


Assuntos
Genômica , Odonatos/classificação , Odonatos/genética , Filogenia , Animais , Feminino , Masculino
2.
Sci Rep ; 14(1): 8963, 2024 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637564

RESUMO

The health of honey bee queens is crucial for colony success, particularly during stressful periods like overwintering. To accompany a previous longitudinal study of colony and worker health, we explored niche-specific gut microbiota, host gene expression, and pathogen prevalence in honey bee queens overwintering in a warm southern climate. We found differential gene expression and bacterial abundance with respect to various pathogens throughout the season. Biologically older queens had larger microbiotas, particularly enriched in Bombella and Bifidobacterium. Both Deformed Wing Virus A and B subtypes were highest in the fat body tissue in January, correlating with colony Varroa levels, and Deformed Wing Virus titers in workers. High viral titers in queens were associated with decreased vitellogenin expression, suggesting a potential trade-off between immune function and reproductive capacity. Additionally, we found a complex and dynamic relationship between these viral loads and immune gene expression, indicating a possible breakdown in the coordinated immune response as the season progressed. Our study also revealed a potential link between Nosema and Melissococcus plutonius infections in queens, demonstrating that seasonal opportunism is not confined to just workers. Overall, our findings highlight the intricate interplay between pathogens, metabolic state, and immune response in honey bee queens. Combined with worker and colony-level metrics from the same colonies, our findings illustrate the social aspect of queen health and resilience over the winter dearth.


Assuntos
Clima , Vírus de RNA , Abelhas , Animais , Estações do Ano , Estudos Longitudinais
3.
Sci Rep ; 13(1): 1162, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36670153

RESUMO

As essential pollinators of ecosystems and agriculture, honey bees (Apis mellifera) are host to a variety of pathogens that result in colony loss. Two highly prevalent larval diseases are European foulbrood (EFB) attributed to the bacterium Melissococcus plutonius, and Varroosis wherein larvae can be afflicted by one or more paralytic viruses. Here we used high-throughput sequencing and qPCR to detail microbial succession of larval development from six diseased, and one disease-free apiary. The disease-free larval microbiome revealed a variety of disease-associated bacteria in early larval instars, but later developmental stages were dominated by beneficial symbionts. Microbial succession associated with EFB pathology differed by apiary, characterized by associations with various gram-positive bacteria. At one apiary, diseased larvae were uniquely described as "melting and deflated", symptoms associated with Varroosis. We found that Acute Bee Paralysis Virus (ABPV) levels were significantly associated with these symptoms, and various gram-negative bacteria became opportunistic in the guts of ABPV afflicted larvae. Perhaps contributing to disease progression, the ABPV associated microbiome was significantly depleted of gram-positive bacteria, a likely result of recent antibiotic application. Our results contribute to the understanding of brood disease diagnosis and treatment, a growing problem for beekeeping and agriculture worldwide.


Assuntos
Bactérias , Ecossistema , Abelhas , Animais , Larva/microbiologia , Bactérias Gram-Positivas , Criação de Abelhas
4.
Zootaxa ; 4934(1): zootaxa.4934.1.1, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33756770

RESUMO

We describe the Cephalozygoptera, a new, extinct suborder of Odonata, composed of the families Dysagrionidae and Sieblosiidae, previously assigned to the Zygoptera, and possibly the Whetwhetaksidae n. fam. The Cephalozygoptera is close to the Zygoptera, but differs most notably by distinctive head morphology. It includes 59 to 64 species in at least 19 genera and one genus-level parataxon. One species is known from the Early Cretaceous (Congqingia rhora Zhang), possibly three from the Paleocene, and the rest from the early Eocene through late Miocene. We describe new taxa from the Ypresian Okanagan Highlands of British Columbia, Canada and Washington, United States of America: 16 new species of Dysagrionidae of the existing genus Dysagrion (D. pruettae); the new genera Okanagrion (O. threadgillae, O. hobani, O. beardi, O. lochmum, O. angustum, O. dorrellae, O. liquetoalatum, O. worleyae, all new species); Okanopteryx (O. jeppesenorum, O. fraseri, O. macabeensis, all new species); Stenodiafanus (S. westersidei, new species); the new genus-level parataxon Dysagrionites (D. delinei new species, D. sp. A, D. sp. B, both new); and one new genus and species of the new family Whetwhetaksidae (Whetwhetaksa millerae).


Assuntos
Odonatos , Animais , América do Norte
5.
Sci Rep ; 10(1): 1497, 2020 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-32001749

RESUMO

Advancements in molecular genetics have revealed that hybridization may be common among plants, animals, and fungi, playing a role in evolutionary dynamics and speciation. While hybridization has been well-documented in pathogenic fungi, the effects of these processes on speciation in fungal lineages with different life histories and ecological niches are largely unexplored. Here we investigated the potential influence of hybridization on the emergence of morphologically and reproductively distinct asexual lichens. We focused on vagrant forms (growing obligately unattached to substrates) within a clade of rock-dwelling, sexually reproducing species in the Rhizoplaca melanophthalma (Lecanoraceae, Ascomycota) species complex. We used phylogenomic data from both mitochondrial and nuclear genomes to infer evolutionary relationships and potential patterns of introgression. We observed multiple instances of discordance between the mitochondrial and nuclear trees, including the clade comprising the asexual vagrant species R. arbuscula, R. haydenii, R. idahoensis, and a closely related rock-dwelling lineage. Despite well-supported phylogenies, we recovered strong evidence of a reticulated evolutionary history using a network approach that incorporates both incomplete lineage sorting and hybridization. These data suggest that the rock-dwelling western North American subalpine endemic R. shushanii is potentially the result of a hybrid speciation event, and introgression may have also played a role in other taxa, including vagrant species R. arbuscula, R. haydenii and R. idahoensis. We discuss the potential roles of hybridization in terms of generating asexuality and novel morphological traits in lichens. Furthermore, our results highlight the need for additional study of reticulate phylogenies when investigating species boundaries and evolutionary history, even in cases with well-supported topologies inferred from genome-scale data.


Assuntos
Ascomicetos/genética , Hibridização Genética , Líquens/genética , Líquens/microbiologia , Ascomicetos/classificação , Ascomicetos/fisiologia , DNA Fúngico/genética , DNA Mitocondrial/genética , Evolução Molecular , Fluxo Gênico , Especiação Genética , Genoma Fúngico , Líquens/classificação , Modelos Genéticos , Montana , Filogenia , Polimorfismo de Nucleotídeo Único , Reprodução Assexuada/genética , Utah
6.
Evolution ; 73(5): 1045-1054, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30734925

RESUMO

The convergent evolution of analogous features is an evolutionary process occurring independently across the tree of life. From the evolution of echolocation, prehensile tail, viviparity, or winged flight, environmental factors often drive this astonishing phenomenon. However, convergent evolution is not always conspicuous or easily identified. Giant damselflies count among the largest flying insects on Earth, and have astonishing ecologies including orb-web spider plucking and oviposition in phytotelmata. One species occurs in the Afrotropics and 18 species are found in the Neotropics. Convergent evolution was historically hypothesized based on the ecological and morphological affinities of these two geographically distant lineages but was not supported by earlier phylogenetic inferences supporting their monophyly. Using a molecular supermatrix approach and a large selection of outgroups, we revisit and reject the monophyly of Afrotropical and Neotropical giant damselflies that is otherwise supported by a morphological phylogeny. Molecular divergence time estimation suggests an origin of Afrotropical giant damselflies in the late Paleogene, and of Neotropical ones at the Cretaceous/Paleogene boundary, thereby rejecting a long-standing West Gondwana vicariance hypothesis. The strong ecological and morphological resemblances between these two independent lineages represents an astonishing case of Amphi-Atlantic tropical convergent evolution.


Assuntos
Evolução Molecular , Odonatos/genética , Odonatos/fisiologia , África , Animais , Ecologia , Florestas , Fósseis , Geografia , Funções Verossimilhança , Modelos Genéticos , Filogenia , Comportamento Predatório , Análise de Sequência de DNA , América do Sul , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA