Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Plant Cell Environ ; 46(7): 2238-2254, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37157998

RESUMO

The highly conserved angiosperm immune receptor HOPZ-ACTIVATED RESISTANCE1 (ZAR1) recognises the activity of diverse pathogen effector proteins by monitoring the ZED1-related kinase (ZRK) family. Understanding how ZAR1 achieves interaction specificity for ZRKs may allow for the expansion of the ZAR1-kinase recognition repertoire to achieve novel pathogen recognition outside of model species. We took advantage of the natural diversity of Arabidopsis thaliana kinases to probe the ZAR1-kinase interaction interface and found that A. thaliana ZAR1 (AtZAR1) can interact with most ZRKs, except ZRK7. We found evidence of alternative splicing of ZRK7, resulting in a protein that can interact with AtZAR1. Despite high sequence conservation of ZAR1, interspecific ZAR1-ZRK pairings resulted in the autoactivation of cell death. We showed that ZAR1 interacts with a greater diversity of kinases than previously thought, while still possessing the capacity for specificity in kinase interactions. Finally, using AtZAR1-ZRK interaction data, we rationally increased ZRK10 interaction strength with AtZAR1, demonstrating the feasibility of the rational design of a ZAR1-interacting kinase. Overall, our findings advance our understanding of the rules governing ZAR1 interaction specificity, with promising future directions for expanding ZAR1 immunodiversity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Magnoliopsida , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Magnoliopsida/metabolismo , Fosfotransferases/metabolismo , Doenças das Plantas , Imunidade Vegetal/fisiologia , Pseudomonas syringae/fisiologia , Proteínas Quinases/metabolismo
2.
Anal Chem ; 92(1): 1276-1284, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31815434

RESUMO

Chronic wasting disease (CWD) is the only prion disease naturally transmitted among farmed and free-ranging cervids (deer, elk, moose, etc.). These diseases are always fatal and have long asymptomatic incubation periods. By 2019, CWD-infected cervids had been detected in 26 states, three Canadian provinces, South Korea, Norway, Finland, and Sweden. Prions (PrPSc) replicate by inducing a normal cellular prion protein (PrPC) to adopt the prion conformation. This prion templated conformational conversion is influenced by PrPC polymorphisms. Cervid PrPC contains at least 20 different polymorphic sites. By using chymotrypsin, trypsin, or trypsin followed by chymotrypsin to digest denatured cervid PrP, 19 peptides suitable for multiple reaction monitoring (MRM)-based analysis and spanning positions 30-51, 61-112, and 114-231 of cervid PrP were identified. Ten of these peptides span polymorphism-containing regions of cervid PrP. The other nine contain no polymorphisms, so they can be used as internal standards. Calibration curves relating the area ratios of MRM signals from polymorphism-containing peptides to appropriate internal standard peptides were linear and had excellent correlation coefficients. Samples from heterozygous (G96/S96) white-tailed deer orally dosed with CWD from homozygous (G96/G96) deer were analyzed. The G96 polymorphism comprised 75 ± 5% of the total PrP from the G96/S96 heterozygotes. Heterozygous animals facilitate conversion of different PrPC polymorphisms into PrPSc. This approach can be used to quantitate the relative amounts of the polymorphisms present in other animal species and even humans.


Assuntos
Polimorfismo Genético/genética , Proteínas Priônicas/genética , Doença de Emaciação Crônica/genética , Animais , Animais Selvagens , Cervos , Espectrometria de Massas , Camundongos , Camundongos Transgênicos
3.
PLoS Pathog ; 14(1): e1006797, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29385212

RESUMO

Very solid evidence suggests that the core of full length PrPSc is a 4-rung ß-solenoid, and that individual PrPSc subunits stack to form amyloid fibers. We recently used limited proteolysis to map the ß-strands and connecting loops that make up the PrPSc solenoid. Using high resolution SDS-PAGE followed by epitope analysis, and mass spectrometry, we identified positions ~116/118, 133-134, 141, 152-153, 162, 169 and 179 (murine numbering) as Proteinase K (PK) cleavage sites in PrPSc. Such sites likely define loops and/or borders of ß-strands, helping us to predict the threading of the ß-solenoid. We have now extended this approach to recombinant PrPSc (recPrPSc). The term recPrPSc refers to bona fide recombinant prions prepared by PMCA, exhibiting infectivity with attack rates of ~100%. Limited proteolysis of mouse and bank vole recPrPSc species yielded N-terminally truncated PK-resistant fragments similar to those seen in brain-derived PrPSc, albeit with varying relative yields. Along with these fragments, doubly N- and C-terminally truncated fragments, in particular ~89/97-152, were detected in some recPrPSc preparations; similar fragments are characteristic of atypical strains of brain-derived PrPSc. Our results suggest a shared architecture of recPrPSc and brain PrPSc prions. The observed differences, in particular the distinct yields of specific PK-resistant fragments, are likely due to differences in threading which result in the specific biochemical characteristics of recPrPSc. Furthermore, recombinant PrPSc offers exciting opportunities for structural studies unachievable with brain-derived PrPSc.


Assuntos
Encéfalo/metabolismo , Proteínas PrPSc/química , Príons/química , Proteólise , Proteínas Recombinantes/química , Animais , Arvicolinae , Feminino , Camundongos , Camundongos Transgênicos , Proteínas PrPSc/metabolismo , Príons/metabolismo , Estrutura Secundária de Proteína
4.
Anal Chem ; 90(2): 1255-1262, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29240410

RESUMO

Atypical scrapie is a sheep prion (PrPSc) disease whose epidemiology is consistent with a sporadic origin and is associated with specific polymorphisms of the normal cellular prion protein (PrPC). To determine the relative amounts of PrP polymorphisms present in atypical scrapie, total PrP was digested with chymotrypsin to generate characteristic peptides spanning relevant polymorphisms at positions 136, 141, 154, 171, and 172 of sheep PrPC. A multiple reaction monitoring method (MRM), employing 15N-labeled internal standards, was used to detect and quantify these polymorphisms present in both the PrPSc and PrPC from heterozygous (ALRRY and ALHQY or ALRQD or AFRQY) atypical scrapie-infected or uninfected control sheep. Both polymorphisms of the full length and truncated (C1) natively expressed PrPC are produced in equal amounts. The overall amount of PrPC present in the infected or uninfected animals was similar. PrPSc isolated from heterozygotes was composed of significant amounts of both PrP polymorphisms, including the ALRRY polymorphism which is highly resistant to classical scrapie. Thus, an atypical scrapie infection does not result from an overexpression of sheep PrPC. The replication of all atypical scrapie prions occurs at comparable rates, despite polymorphisms at positions 141, 154, 171, or 172.


Assuntos
Polimorfismo de Nucleotídeo Único , Proteínas Priônicas/genética , Scrapie/genética , Sequência de Aminoácidos , Animais , Genótipo , Heterozigoto , Proteínas Priônicas/química , Ovinos , Regulação para Cima
5.
Anal Chem ; 89(1): 854-861, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-27936597

RESUMO

Scrapie is a prion (PrPSc) disease of sheep. The incubation period of sheep scrapie is strongly influenced by polymorphisms at positions 136, 154, and 171 of a sheep's normal cellular prion protein (PrPC). Chymotrypsin was used to digest sheep recombinant PrP to identify a set of characteristic peptides [M132LGSXMSRPL141 (X = A or V), Y153XENMY158 (X,= H or R), and Y166RPVDXY172 (X = H, K, Q, or R)] that could be used to detect and quantitate polymorphisms at positions 136, 154, and 171 of sheep PrPC or PrPSc. These peptides were used to develop a multiple reaction monitoring method (MRM) to detect the amounts of a particular polymorphism in a sample of PrPSc isolated from sheep heterozygous for their PrPC proteins. The limit of detection for these peptides was less than 50 attomole. Spinal cord tissue from heterozygous (ARQ/VRQ or ARH/ARQ) scrapie-infected Rasa Aragonesa sheep was analyzed using this MRM method. Both sets of heterozygotes show the presence of both polymorphisms in PrPSc. This was true for samples containing both proteinase K (PK)-sensitive and PK-resistant PrPSc and samples containing only the PK-resistant PrPSc. These results show that heterozygous animals contain PrPSc that is composed of significant amounts of both PrP polymorphisms.


Assuntos
Polimorfismo Genético/genética , Príons/genética , Scrapie/genética , Animais , Príons/análise , Ovinos , Medula Espinal/química
6.
Biochemistry ; 55(6): 894-902, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-26786805

RESUMO

Prions (PrP(Sc)) are molecular pathogens that are able to convert the isosequential normal cellular prion protein (PrP(C)) into a prion. The only demonstrated difference between PrP(C) and PrP(Sc) is conformational: they are isoforms. A given host can be infected by more than one kind or strain of prion. Five strains of hamster-adapted scrapie [Sc237 (=263K), drowsy, 139H, 22AH, and 22CH] and recombinant PrP were reacted with five different concentrations (0, 1, 5, 10, and 20 mM) of reagent (N-hydroxysuccinimide ester of acetic acid) that acetylates lysines. The extent of lysine acetylation was quantitated by mass spectrometry. The lysines in rPrP react similarly. The lysines in the strains react differently from one another in a given strain and react differently when strains are compared. Lysines in the C-terminal region of prions have different strain-dependent reactivity. The results are consistent with a recently proposed model for the structure of a prion. This model proposes that prions are composed of a four-rung ß-solenoid structure comprised of four ß-sheets that are joined by loops and turns of amino acids. Variation in the amino acid composition of the loops and ß-sheet structures is thought to result in different strains of prions.


Assuntos
Proteínas PrPSc/análise , Proteínas PrPSc/química , Scrapie , Sequência de Aminoácidos , Animais , Cricetinae , Espectrometria de Massas/métodos , Mesocricetus , Dados de Sequência Molecular , Proteínas PrPSc/genética , Estrutura Secundária de Proteína , Scrapie/genética , Scrapie/patologia
7.
Anal Chem ; 86(10): 4698-706, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24761992

RESUMO

Shiga-like toxins (verotoxins) are a class of AB5 holotoxins that are primarily responsible for the virulence associated with Shiga-like toxin producing Escherichia coli (STEC) infections. The holotoxins are composed of a pentamer of identical subunits (B subunit) responsible for delivering the catalytic subunit (A subunit) to a host cell and facilitating endocytosis of the toxin into the cell. The B subunits are not associated with toxicity. We developed a multiple reaction monitoring method based on analyzing conserved peptides, derived from the tryptic digestion of the B subunits. Stable-isotope-labeled analogues were prepared and used as internal standards to identify and quantify these characteristic peptides. We were able to detect and quantify Shiga toxins (Stx), Shiga-like toxin type 1 (Stx1) and type 2 (Stx2) subtypes, and to distinguish among most of the known subtypes. The limit of detection for digested pure standards was in the low attomole range/injection (~10 attomoles), which corresponded to a concentration of 1.7 femtomol/mL. A matrix effect was observed when dilute samples were digested in the buffer, Luria broth, or mouse plasma (LOD ~ 30 attomol/injection = 5 femtomol/mL). In addition, we determined that the procedures necessary to perform our mass spectrometry-based analysis completely inactivate the toxins present in the sample. This is a safe and effective method of detecting and quantitating Stx, Stx1, and Stx2, since it does not require the use of intact toxins.


Assuntos
Toxinas Shiga/análise , Sequência de Aminoácidos , Animais , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Cromatografia Líquida de Alta Pressão , Hidrólise , Dados de Sequência Molecular , Toxina Shiga I/análise , Toxina Shiga I/toxicidade , Toxina Shiga II/análise , Toxina Shiga II/toxicidade , Toxinas Shiga/toxicidade , Tripsina/química , Células Vero
8.
J Am Soc Mass Spectrom ; 34(2): 255-263, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36608322

RESUMO

The normal cellular prion protein (PrPC) and its infectious conformer, PrPSc, possess a disproportionately greater amount of methionines than would be expected for a typical mammalian protein. The thioether of methionine can be readily oxidized to the corresponding sulfoxide, which means that oxidation of methionine can be used to map the surface of the conformation of PrPC or PrPSc, as covalent changes are retained after denaturation. We identified a set of peptides (TNMK, MLGSAMSR, LLGSAMSR, PMIHFGNDWEDR, ENMNR, ENMYR, IMER, MMER, MIER, VVEQMCVTQYQK, and VVEQMCITQYQR) that contains every methionine in sheep, cervid, mouse, and bank vole PrP. Each is the product of a tryptic digestion and is suitable for a multiple reaction monitoring (MRM) based analysis. The peptides chromatograph well. The oxidized and unoxidized peptides containing one methionine readily separate. The unoxidized, two singly oxidized, and doubly oxidized forms of the MLGSAMSR and MMER peptides are also readily distinguishable. This approach can be used to determine the surface exposure of each methionine by measuring its oxidation after reaction with added hydrogen peroxide.


Assuntos
Proteínas Priônicas , Príons , Animais , Camundongos , Ovinos , Metionina/química , Príons/química , Racemetionina , Mamíferos/metabolismo
9.
J Am Soc Mass Spectrom ; 34(2): 245-254, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36622794

RESUMO

In sheep, the transmissibility and progression of scrapie, a sheep prion (PrPSc) disease, is strongly dependent upon specific amino acid polymorphisms in the natively expressed prion protein (PrPC). Sheep expressing PrPC with lysine (K) polymorphism at position 171 (K171) are partially resistant to oronasal dosing of classical sheep scrapie. In addition, scrapie infected sheep expressing the K171 polymorphism show a longer incubation period compared to sheep homozygous (glutamine (Q)) at position 171. Quantitating the amount of the K171 polymorphism in a sheep scrapie sample can provide important information on the composition of PrPSc. A tryptic peptide, 159R.YPNQVYYRPVDK.Y172, derived from the digestion of 171K recombinant PrP, was identified as an analyte peptide suitable for a multiple reaction monitoring-based analysis. This method, using 15N-labeled analogs and another internal peptide from the proteinase K-resistant core, permits the simultaneous quantitation of the total amount of PrP and the proportion of K171 polymorphism in the sample. Background molecules with similar retention times and transitions were present in samples from scrapie-infected sheep. Proteinase K digestion followed by ultracentrifugation-based isolation or phosphotungstic acid-based isolation were employed to minimize the contribution of those background molecules, making this approach suitable for quantitating the amount of the K171 polymorphism in heterozygous scrapie infected sheep.


Assuntos
Scrapie , Animais , Ovinos , Scrapie/genética , Scrapie/metabolismo , Lisina/metabolismo , Endopeptidase K , Proteínas Priônicas , Espectrometria de Massas , Encéfalo/metabolismo
10.
Front Bioeng Biotechnol ; 8: 562953, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072723

RESUMO

Prions propagate by a template driven process, inducing the normal cellular isoform (PrPC) to adopt the prion (PrPSc) conformation. In PrPC, the positions of lysines are highly conserved and strongly influence prion propagation. In this study, covalent modification was used to quantitate the role of lysines in the PrPSc template that drives prion replication. The ε-amino group of lysines in the PrPSc (hamster-adapted scrapie Sc237) template was acetylated by either acetic anhydride (Ac2O) or the N-hydroxysuccinimide ester of acetic acid (Ac-NHS). The extent of lysine acetylation in PrPSc was quantitated by mass spectrometry or Western blot-based analysis. Identical samples were bioassayed to quantitate the loss of infectivity associated with lysine acetylation. The reduction of infectivity at the highest reagent concentration was approximately 90% (∼10-fold). Ten of the eleven prion lysines were acetylated to a greater extent (25-400-fold) than the observed loss of infectivity. Only one lysine, at position 220 (K220), had a reactivity that is consistent with the loss of infectivity. Although lysines are highly conserved and play a crucial role in converting PrPC into the PrPSc conformation, once that conformation is adopted, the lysines present in the PrPSc template play only a limited role in prion replication. In principle, this approach could be used to clarify the role of other amino acids in the replication of prions and other prion-like protein misfolding diseases.

11.
J Agric Food Chem ; 67(5): 1554-1562, 2019 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-30485086

RESUMO

A set of 45 environmental strains of Shiga toxin producing Escherichia coli (STEC) from three California counties were analyzed for Shiga toxin production by nanospray liquid chromatography-mass spectrometry and Vero cell bioassay. The STEC in this set comprised six serotypes ((O113:H21, O121:H19, O157:H7, O6:H34, O177:H25, and O185:H7) each containing either the stx2a or stx2c operon. Six of the seven O113:H21 were found to contain two distinct stx2a operons. Eight strains of O157:H7 possessed a stx2c operon whose A subunit gene was interrupted by an insertion sequence (IS1203v). Shiga toxin production was induced by nutrient depletion and quantitated by mass spectrometry. The 37 strains produced Shiga toxins in a near 50-fold range (1.4-49 ng/mL). The IS-interrupted strains expressed low but measurable amounts of the B subunits (0.5-1.9 ng/mL). Another strain possessed an identical stx operon without an IS interruption and produced intact Stx2c (5.7 ng/mL).


Assuntos
Fezes/microbiologia , Gado/microbiologia , Toxina Shiga/química , Escherichia coli Shiga Toxigênica/química , Microbiologia do Solo , Animais , California , Chlorocebus aethiops , Cromatografia Líquida , Escherichia coli O157/química , Escherichia coli O157/genética , Escherichia coli O157/metabolismo , Sedimentos Geológicos/microbiologia , Humanos , Espectrometria de Massas , Óperon , Toxina Shiga/metabolismo , Escherichia coli Shiga Toxigênica/genética , Escherichia coli Shiga Toxigênica/isolamento & purificação , Escherichia coli Shiga Toxigênica/metabolismo , Células Vero
12.
Toxins (Basel) ; 7(12): 5236-53, 2015 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-26633510

RESUMO

Shiga-like toxins (verotoxins) are responsible for the virulence associated with a variety of foodborne bacterial pathogens. Direct detection of toxins requires a specific and sensitive technique. In this study, we describe a mass spectrometry-based method of analyzing the tryptic decapeptides derived from the non-toxic B subunits. A gene encoding a single protein that yields a set of relevant peptides upon digestion with trypsin was designed. The (15)N-labeled protein was prepared by growing the expressing bacteria in minimal medium supplemented with (15)NH4Cl. Trypsin digestion of the (15)N-labeled protein yields a set of (15)N-labeled peptides for use as internal standards to identify and quantify Shiga or Shiga-like toxins. We determined that this approach can be used to detect, quantify and distinguish among the known Shiga toxins (Stx) and Shiga-like toxins (Stx1 and Stx2) in the low attomole range (per injection) in complex media, including human serum. Furthermore, Stx1a could be detected and distinguished from the newly identified Stx1e in complex media. As new Shiga-like toxins are identified, this approach can be readily modified to detect them. Since intact toxins are digested with trypsin prior to analysis, the handling of intact Shiga toxins is minimized. The analysis can be accomplished within 5 h.


Assuntos
Espectrometria de Massas/métodos , Toxina Shiga I/sangue , Toxina Shiga II/sangue , Humanos , Peptídeos/análise , Peptídeos/sangue , Toxina Shiga I/análise , Toxina Shiga II/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA