Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Arch Toxicol ; 91(11): 3571-3585, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28975360

RESUMO

Microsomal and soluble epoxide hydrolase (mEH and sEH) fulfill apparently distinct roles: Whereas mEH detoxifies xenobiotics, sEH hydrolyzes fatty acid (FA) signaling molecules and is thus implicated in a variety of physiological functions. These epoxy FAs comprise epoxyeicosatrienoic acids (EETs) and epoxy-octadecenoic acids (EpOMEs), which are formed by CYP epoxygenases from arachidonic acid (AA) and linoleic acid, respectively, and then are hydrolyzed to their respective diols, the so-called DHETs and DiHOMEs. Although EETs and EpOMEs are also substrates for mEH, its role in lipid signaling is considered minor due to lower abundance and activity relative to sEH. Surprisingly, we found that in plasma from mEH KO mice, hydrolysis rates for 8,9-EET and 9,10-EpOME were reduced by 50% compared to WT plasma. This strongly suggests that mEH contributes substantially to the turnover of these FA epoxides-despite kinetic parameters being in favor of sEH. Given the crucial role of liver in controlling plasma diol levels, we next studied the capacity of sEH and mEH KO liver microsomes to synthesize DHETs with varying concentrations of AA (1-30 µM) and NADPH. mEH-generated DHET levels were similar to the ones generated by sEH, when AA concentrations were low (1 µM) or epoxygenase activity was curbed by modulating NADPH. With increasing AA concentrations sEH became more dominant and with 30 µM AA produced twice the level of DHETs compared to mEH. Immunohistochemistry of C57BL/6 liver slices further revealed that mEH expression was more widespread than sEH expression. mEH immunoreactivity was detected in hepatocytes, Kupffer cells, endothelial cells, and bile duct epithelial cells, while sEH immunoreactivity was confined to hepatocytes and bile duct epithelial cells. Finally, transcriptome analysis of WT, mEH KO, and sEH KO liver was carried out to discern transcriptional changes associated with the loss of EH genes along the CYP-epoxygenase-EH axis. We found several prominent dysregulations occurring in a parallel manner in both KO livers: (a) gene expression of Ephx1 (encoding for mEH protein) was increased 1.35-fold in sEH KO, while expression of Ephx2 (encoding for sEH protein) was increased 1.4-fold in mEH KO liver; (b) Cyp2c genes, encoding for the predominant epoxygenases in mouse liver, were mostly dysregulated in the same manner in both sEH and mEH KO mice, showing that loss of either EH has a similar impact. Taken together, mEH appears to play a leading role in the hydrolysis of 8,9-EET and 9,10-EpOME and also contributes to the hydrolysis of other FA epoxides. It probably profits from its high affinity for FA epoxides under non-saturating conditions and its close physical proximity to CYP epoxygenases, and compensates its lower abundance by a more widespread expression, being the only EH present in several sEH-lacking cell types.


Assuntos
Epóxido Hidrolases/metabolismo , Metabolismo dos Lipídeos/fisiologia , Fígado/fisiologia , Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Ácido 8,11,14-Eicosatrienoico/metabolismo , Animais , Epóxido Hidrolases/genética , Compostos de Epóxi/metabolismo , Expressão Gênica , Inativação Metabólica , Fígado/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microssomos Hepáticos/metabolismo , Ácidos Oleicos/metabolismo , Oxilipinas/sangue , Oxilipinas/metabolismo
2.
Biosensors (Basel) ; 9(1)2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-30823443

RESUMO

In previous studies, we encountered substantial problems using the CFP_YFP Förster resonance energy transfer (FRET) pair to analyze protein proximity in the endoplasmic reticulum of live cells. Bleed-through of the donor emission into the FRET channel and overlap of the FRET emission wavelength with highly variable cellular autofluorescence significantly compromised the sensitivity of our analyses. Here, we propose mCerulean3 and mRuby3 as a new FRET pair to potentially overcome these problems. Fusion of the two partners with a trypsin-cleavable linker allowed the direct comparison of the FRET signal characteristics of the associated partners with those of the completely dissociated partners. We compared our new FRET pair with the canonical CFP_YFP and the more recent mClover3_mRuby3 pairs and found that, despite a lower total FRET signal intensity, the novel pair had a significantly better signal to noise ratio due to lower donor emission bleed-through. This and the fact that the mRuby3 emission spectrum did not overlap with that of common cellular autofluorescence renders the mCerulean3_mRuby3 FRET pair a promising alternative to the common CFP_YFP FRET pair for the interaction analysis of membrane proteins in living cells.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Corantes Fluorescentes/química , Proteínas de Membrana/isolamento & purificação , Mapeamento de Interação de Proteínas/métodos , Retículo Endoplasmático/química , Células HEK293 , Humanos , Proteínas de Membrana/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA