Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 586
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 576(7787): 416-422, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31853084

RESUMO

Magnetic topological insulators are narrow-gap semiconductor materials that combine non-trivial band topology and magnetic order1. Unlike their nonmagnetic counterparts, magnetic topological insulators may have some of the surfaces gapped, which enables a number of exotic phenomena that have potential applications in spintronics1, such as the quantum anomalous Hall effect2 and chiral Majorana fermions3. So far, magnetic topological insulators have only been created by means of doping nonmagnetic topological insulators with 3d transition-metal elements; however, such an approach leads to strongly inhomogeneous magnetic4 and electronic5 properties of these materials, restricting the observation of important effects to very low temperatures2,3. An intrinsic magnetic topological insulator-a stoichiometric well ordered magnetic compound-could be an ideal solution to these problems, but no such material has been observed so far. Here we predict by ab initio calculations and further confirm using various experimental techniques the realization of an antiferromagnetic topological insulator in the layered van der Waals compound MnBi2Te4. The antiferromagnetic ordering  that MnBi2Te4  shows makes it invariant with respect to the combination of the time-reversal and primitive-lattice translation symmetries, giving rise to a ℤ2 topological classification; ℤ2 = 1 for MnBi2Te4, confirming its topologically nontrivial nature. Our experiments indicate that the symmetry-breaking (0001) surface of MnBi2Te4 exhibits a large bandgap in the topological surface state. We expect this property to eventually enable the observation of a number of fundamental phenomena, among them quantized magnetoelectric coupling6-8 and axion electrodynamics9,10. Other exotic phenomena could become accessible at much higher temperatures than those reached so far, such as the quantum anomalous Hall effect2 and chiral Majorana fermions3.

2.
Pharmacol Rev ; 74(3): 552-599, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35710137

RESUMO

The nitrogen mustards are powerful cytotoxic and lymphoablative agents and have been used for more than 60 years. They are employed in the treatment of cancers, sarcomas, and hematologic malignancies. Cyclophosphamide, the most versatile of the nitrogen mustards, also has a place in stem cell transplantation and the therapy of autoimmune diseases. Adverse effects caused by the nitrogen mustards on the central nervous system, kidney, heart, bladder, and gonads remain important issues. Advances in analytical techniques have facilitated the investigation of the pharmacokinetics of the nitrogen mustards, especially the oxazaphosphorines, which are prodrugs requiring metabolic activation. Enzymes involved in the metabolism of cyclophosphamide and ifosfamide are very polymorphic, but a greater understanding of the pharmacogenomic influences on their activity has not yet translated into a personalized medicine approach. In addition to damaging DNA, the nitrogen mustards can act through other mechanisms, such as antiangiogenesis and immunomodulation. The immunomodulatory properties of cyclophosphamide are an area of current exploration. In particular, cyclophosphamide decreases the number and activity of regulatory T cells, and the interaction between cyclophosphamide and the intestinal microbiome is now recognized as an important factor. New derivatives of the nitrogen mustards continue to be assessed. Oxazaphosphorine analogs have been synthesized in attempts to both improve efficacy and reduce toxicity, with varying degrees of success. Combinations of the nitrogen mustards with monoclonal antibodies and small-molecule targeted agents are being evaluated. SIGNIFICANCE STATEMENT: The nitrogen mustards are important, well-established therapeutic agents that are used to treat a variety of diseases. Their role is continuing to evolve.


Assuntos
Antineoplásicos , Neoplasias , Compostos de Mostarda Nitrogenada , Antineoplásicos/efeitos adversos , Ciclofosfamida/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Nitrogênio/uso terapêutico , Compostos de Mostarda Nitrogenada/uso terapêutico
3.
Phys Rev Lett ; 132(21): 216201, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38856292

RESUMO

Intriguingly, conducting perovskite interfaces between ordinary band insulators are widely explored, whereas similar interfaces with Mott insulators are still not quite understood. Here, we address the (001), (110), and (111) interfaces between the LaTiO_{3} Mott, and large band gap KTaO_{3} insulators. Based on first-principles calculations, we reveal a mechanism of interfacial conductivity, which is distinct from a formerly studied one applicable to interfaces between polar wideband insulators. Here, the key factor causing conductivity is the matching of oxygen octahedra tilting in KTaO_{3} and LaTiO_{3} which, due to a small gap in the LaTiO_{3} results in its sensitivity to the crystal structure, yields metallization of its overlayer and following charge transfer from Ti to Ta. Our findings, also applicable to other Mott insulators interfaces, shed light on the emergence of conductivity observed in LaTiO_{3}/KTaO_{3} (110) where the "polar" arguments are not applicable and on the emergence of superconductivity in these structures.

4.
J Chem Phys ; 160(7)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38364007

RESUMO

The relaxation spectra of glass formers solely displaying an α-peak and excess wing contribution collected by various methods are reanalyzed to pin down their different spectral evolution. We show that master curve construction encompassing both α-peak and emerging excess wing works for depolarized light scattering (DLS) and nuclear magnetic resonance (NMR) relaxometry. It reveals the self-part of the slow dynamics' spectrum. Master curves are to be understood as a result of a more extensive scaling covering all temperatures instead of strict frequency-temperature superposition. DLS and NMR display identical relaxation spectra; yet, comparing different systems, we do not find a generic structural relaxation at variance with recent claims. Dielectric spectroscopy (DS) spectra show particularities, which render master curve construction obsolete. The DS α-peak is enhanced or suppressed with respect to that of DLS or NMR, yet, not correlated to the polarity of the liquid. Attempting to single out the excess wing from the overall spectrum discloses a stronger exponential temperature dependence of its amplitude compared to that below Tg and a link between its exponent and that of the fast dynamics' spectrum. Yet, such a decomposition of α-peak and excess wing appears to be unphysical. Among many different glasses, the amplitude of the excess wing power-law spectrum is found to be identical at Tg, interpreted as a relaxation analog to the Lindemann criterion.

5.
Eur J Appl Physiol ; 124(5): 1609-1620, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38175273

RESUMO

PURPOSE: This study aimed to investigate physiological responses, muscle-tendon unit properties of the quadriceps muscle, and mechanical performance after repeated sprint cycling at optimal and 70% of optimal cadence. METHODS: Twenty recreational cyclists performed as first sprint performance cycling test and during subsequent sessions two repeated sprint cycling protocols at optimal and 70% of optimal cadence, in random order. The muscle-tendon unit outcome measures on the dominant leg included muscle thickness, fascicle length (Lf), pennation angle (θp), and stiffness for the rectus femoris (RF), vastus lateralis (VL), and vastus medialis muscle (VM) at baseline, immediately after repeated sprint cycling, and 1-h post-exercise. RESULTS: The results showed an increase in muscle thickness and θp in RF, VL, and VM for both cadences from baseline to immediately after exercise. The Lf decreased in RF (both cadences), while stiffness decreased in RF, VL, and VM at optimal cadence, and in VL at 70% of optimal cadence from baseline to immediately after exercise. CONCLUSION: The present study revealed that the alterations in muscle characteristics were more marked after repeated sprint cycling at optimal cadence compared with a lower cadence most likely as a result of higher load on the muscle-tendon unit at optimal cadence.


Assuntos
Ciclismo , Humanos , Masculino , Ciclismo/fisiologia , Adulto , Músculo Esquelético/fisiologia , Músculo Quadríceps/fisiologia , Músculo Quadríceps/diagnóstico por imagem , Desempenho Atlético/fisiologia , Contração Muscular/fisiologia , Adulto Jovem
6.
J Am Chem Soc ; 145(50): 27563-27575, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38060438

RESUMO

Sulfonated, cross-linked porous polymers are promising frameworks for aqueous high-performance electrolyte-host systems for electrochemical energy storage and conversion. The systems offer high proton conductivities, excellent chemical and mechanical stabilities, and straightforward water management. However, little is known about mass transport mechanisms in such nanostructured hosts. We report on the synthesis and postsynthetic sulfonation of an aromatic framework (SPAF-2) with a 3D-interconnected nanoporosity and varying sulfonation degrees. Water adsorption produces the system SPAF-2H20. It features proton exchange capacities up to 6 mequiv g-1 and exceptional proton conductivities of about 1 S cm-1. Two contributions are essential for the highly efficient transport. First, the nanometer-sized pores link the charge transport to the diffusion of adsorbed water molecules, which is almost as fast as bulk water. Second, continuous exchange between interface-bound and mobile species enhances the conductivities at elevated temperatures. SPAF-2H20 showcases how to tailor nanostructured electrolyte-host systems with liquid-like conductivities.

7.
Nat Mater ; 21(5): 514-517, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35210586

RESUMO

Ultrafast manipulation of magnetism bears great potential for future information technologies. While demagnetization in ferromagnets is governed by the dissipation of angular momentum1-3, materials with multiple spin sublattices, for example antiferromagnets, can allow direct angular momentum transfer between opposing spins, promising faster functionality. In lanthanides, 4f magnetic exchange is mediated indirectly through the conduction electrons4 (the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction), and the effect of such conditions on direct spin transfer processes is largely unexplored. Here, we investigate ultrafast magnetization dynamics in 4f antiferromagnets and systematically vary the 4f occupation, thereby altering the magnitude of the RKKY coupling energy. By combining time-resolved soft X-ray diffraction with ab initio calculations, we find that the rate of direct transfer between opposing moments is directly determined by this coupling. Given the high sensitivity of RKKY to the conduction electrons, our results offer a useful approach for fine tuning the speed of magnetic devices.

8.
Arch Orthop Trauma Surg ; 143(5): 2317-2324, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35359162

RESUMO

PURPOSE: Vertebral osteomyelitis (VO) is a severe clinical entity associated with significant morbidity and mortality. Several studies have showed that successful treatment of VO patients leads to significantly improved quality of life (QoL). Nevertheless, QoL levels of these patients remained below those of the general population. There are rarely studies focusing on predicting factors for favourable QoL after surgically treated VO. The aim of this study was to identify factors influencing positively the QoL of patients undergoing surgery for VO. METHODS: We conducted a prospective monocentric study including surgically treated VO patients from 2008 to 2016. Data were collected before (T0) and 1 year (T1) after surgery. Primary outcome was favourable QoL defined as back pain with disability restricting normal life activity with a cutoff value ≥ 12 on Oswestry Disability Index (ODI). ETHICS: Ethical approval was given by the Faculty of Medicine at the University of Cologne (09-182). RESULTS: A total of 119 patients surviving 1 year after surgically treated VO were analysed. Favourable QoL was achieved in 35/119 patients. On multivariate analysis, younger age (hazard ratio = HR: 0.95; 95% CI 0.91-0.99; p = 0.022), lower albumin (HR: 0.9; 0.83-0.98; p = 0.019) an ASA score ≤ 2 (HR:4.24; 95%CI 1.42-12.68; p = 0.010), and a lower preoperative leg pain on the VAS (HR: 0.86; 95% CI 0.76-0.97; p = 0.018) were identified as independent risk factors for favourable QoL. Interestingly, the absence of neurological deficits was not predictive for a favourable outcome by means of QoL. CONCLUSION: One-third of surgically treated VO patients (29%) in our cohort achieved favourable QoL by means of ODI. Our findings can facilitate an estimation of the prognosis when informing the patient before surgery, and underscore that spine disability questionnaires, such as ODI, measuring QoL, are mandatory to evaluate comprehensively the outcome of this entity.


Assuntos
Qualidade de Vida , Coluna Vertebral , Humanos , Estudos Prospectivos , Resultado do Tratamento , Coluna Vertebral/cirurgia , Dor nas Costas/epidemiologia , Dor nas Costas/cirurgia , Vértebras Lombares/cirurgia , Avaliação da Deficiência
9.
BMC Genomics ; 23(1): 608, 2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-35987630

RESUMO

BACKGROUND: Functional genomics uses unbiased systematic genome-wide gene disruption or analyzes natural variations such as gene expression profiles of different tissues from multicellular organisms to link gene functions to particular phenotypes. Functional genomics approaches are of particular importance to identify large sets of genes that are specifically important for a particular biological process beyond known candidate genes, or when the process has not been studied with genetic methods before. RESULTS: Here, we present a large set of genes whose disruption interferes with the function of the odoriferous defensive stink glands of the red flour beetle Tribolium castaneum. This gene set is the result of a large-scale systematic phenotypic screen using RNA interference applied in a genome-wide forward genetics manner. In this first-pass screen, 130 genes were identified, of which 69 genes could be confirmed to cause phenotypic changes in the glands upon knock-down, which vary from necrotic tissue and irregular reservoir size to irregular color or separation of the secreted gland compounds. Gene ontology analysis revealed that many of those genes are encoding enzymes (peptidases and cytochromes P450) as well as proteins involved in membrane trafficking with an enrichment in lysosome and mineral absorption pathways. The knock-down of 13 genes caused specifically a strong reduction of para-benzoquinones in the gland reservoirs, suggesting a specific function in the synthesis of these toxic compounds. Only 14 of the 69 confirmed gland genes are differentially overexpressed in stink gland tissue and thus could have been detected in a transcriptome-based analysis. However, only one out of eight genes identified by a transcriptomics approach known to cause phenotypic changes of the glands upon knock-down was recognized by this phenotypic screen, indicating the limitation of such a non-redundant first-pass screen. CONCLUSION: Our results indicate the importance of combining diverse and independent methodologies to identify genes necessary for the function of a certain biological tissue, as the different approaches do not deliver redundant results but rather complement each other. The presented phenotypic screen together with a transcriptomics approach are now providing a set of close to hundred genes important for odoriferous defensive stink gland physiology in beetles.


Assuntos
Besouros , Tribolium , Animais , Besouros/genética , Genômica , Fenótipo , Transcriptoma , Tribolium/genética
10.
Phys Rev Lett ; 129(12): 126101, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36179192

RESUMO

We consider helical rotation of skyrmions confined in the potentials formed by nanodisks. Based on numerical and analytical calculations we propose the skyrmion echo phenomenon. The physical mechanism of the skyrmion echo formation is also proposed. Because of the distortion of the lattice, impurities, or pinning effect, confined skyrmions experience slightly different local fields, which leads to dephasing of the initial signal. The interaction between skyrmions also can contribute to the dephasing process. However, switching the magnetization direction in the nanodiscs (e.g., by spin transfer torque) also switches the helical rotation of the skyrmions from clockwise to anticlockwise (or vice versa), and this restores the initial signal (which is the essence of skyrmion echo).

11.
Crit Rev Biotechnol ; 42(2): 254-270, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34167401

RESUMO

Potential future application of engineered gene drives (GDs), which bias their own inheritance and can spread genetic modifications in wild target populations, has sparked both enthusiasm and concern. Engineered GDs in insects could potentially be used to address long-standing challenges in control of disease vectors, agricultural pests and invasive species, or help to rescue endangered species, and thus provide important public benefits. However, there are concerns that the deliberate environmental release of GD modified insects may pose different or new harms to animal and human health and the wider environment, and raise novel challenges for risk assessment. Risk assessors, risk managers, developers, potential applicants and other stakeholders at many levels are currently discussing whether there is a need to develop new or additional risk assessment guidance for the environmental release of GD modified organisms, including insects. Developing new or additional guidance that is useful and practical is a challenge, especially at an international level, as risk assessors, risk managers and many other stakeholders have different, often contrasting, opinions and perspectives toward the environmental release of GD modified organisms, and on the adequacy of current risk assessment frameworks for such organisms. Here, we offer recommendations to overcome some of the challenges associated with the potential future development of new or additional risk assessment guidance for GD modified insects and provide considerations on areas where further risk assessment guidance may be required.


Assuntos
Tecnologia de Impulso Genético , Animais , Vetores de Doenças , Humanos , Insetos/genética , Espécies Introduzidas , Medição de Risco
12.
J Phys Chem A ; 126(16): 2578-2589, 2022 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-35420816

RESUMO

The extraordinary sensitivity of 129Xe, hyperpolarized by spin-exchange optical pumping, is essential for magnetic resonance imaging and spectroscopy in life and materials sciences. However, fluctuations of the polarization over time still limit the reproducibility and quantification with which the interconnectivity of pore spaces can be analyzed. Here, we present a polarizer that not only produces a continuous stream of hyperpolarized 129Xe but also maintains stable polarization levels on the order of hours, independent of gas flow rates. The polarizer features excellent magnetization production rates of about 70 mL/h and 129Xe polarization values on the order of 40% at moderate system pressures. Key design features include a vertically oriented, large-capacity two-bodied pumping cell and a separate Rb presaturation chamber having its own temperature control, independent of the main pumping cell oven. The separate presaturation chamber allows for precise control of the Rb vapor density by restricting the Rb load and varying the temperature. The polarizer is both compact and transportable─making it easily storable─and adaptable for use in various sample environments. Time-evolved two-dimensional (2D) exchange spectra of 129Xe absorbed in the microporous metal-organic framework CAU-1-AmMe are presented to highlight the quantitative nature of the device.

13.
Int J Mol Sci ; 23(9)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35563506

RESUMO

It is a longstanding question whether universality or specificity characterize the molecular dynamics underlying the glass transition of liquids. In particular, there is an ongoing debate to what degree the shape of dynamical susceptibilities is common to various molecular glass formers. Traditionally, results from dielectric spectroscopy and light scattering have dominated the discussion. Here, we show that nuclear magnetic resonance (NMR), primarily field-cycling relaxometry, has evolved into a valuable method, which provides access to both translational and rotational motions, depending on the probe nucleus. A comparison of 1H NMR results indicates that translation is more retarded with respect to rotation for liquids with fully established hydrogen-bond networks; however, the effect is not related to the slow Debye process of, for example, monohydroxy alcohols. As for the reorientation dynamics, the NMR susceptibilities of the structural (α) relaxation usually resemble those of light scattering, while the dielectric spectra of especially polar liquids have a different broadening, likely due to contributions from cross correlations between different molecules. Moreover, NMR relaxometry confirms that the excess wing on the high-frequency flank of the α-process is a generic relaxation feature of liquids approaching the glass transition. However, the relevance of this feature generally differs between various methods, possibly because of their different sensitivities to small-amplitude motions. As a major advantage, NMR is isotope specific; hence, it enables selective studies on a particular molecular entity or a particular component of a liquid mixture. Exploiting these possibilities, we show that the characteristic Cole-Davidson shape of the α-relaxation is retained in various ionic liquids and salt solutions, but the width parameter may differ for the components. In contrast, the low-frequency flank of the α-relaxation can be notably broadened for liquids in nanoscopic confinements. This effect also occurs in liquid mixtures with a prominent dynamical disparity in their components.


Assuntos
Vidro , Imageamento por Ressonância Magnética , Álcoois/química , Animais , Ligação de Hidrogênio , Espectroscopia de Ressonância Magnética/métodos
14.
Int J Mol Sci ; 23(20)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36293462

RESUMO

Sperm marking provides a key tool for reproductive biology studies, but it also represents a valuable monitoring tool for genetic pest control strategies such as the sterile insect technique. Sperm-marked lines can be generated by introducing transgenes that mediate the expression of fluorescent proteins during spermatogenesis. The homozygous lines established by transgenesis approaches are going through a genetic bottleneck that can lead to reduced fitness. Transgenic SIT approaches have mostly focused on Dipteran and Lepidopteran pests so far. With this study, we provide sperm-marked lines for the Coleopteran pest model organism, the red flour beetle Tribolium castaneum, based on the ß2-tubulin promoter/enhancer driving red (DsRed) or green (EGFP) fluorescence. The obtained lines are reasonably competitive and were thus used for our studies on reproductive biology, confirming the phenomenon of 'last-male sperm precedence' and that the spermathecae are deployed for long-term sperm storage, enabling the use of sperm from first mating events even after secondary mating events for a long period of time. The homozygosity and competitiveness of the lines will enable future studies to analyze the controlled process of sperm movement into the long-term storage organ as part of a post-mating cryptic female choice mechanism of this extremely promiscuous species.


Assuntos
Besouros , Tribolium , Animais , Masculino , Feminino , Comportamento Sexual Animal , Besouros/genética , Moduladores de Tubulina , Sêmen , Espermatozoides/metabolismo , Tribolium/genética , Biologia
15.
Biol Sport ; 39(2): 289-293, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35309522

RESUMO

Moderate paddling, as in long distance kayaking, constitutes an endurance activity, which shares energetic aspects with activities such as long distance running and road cycling. The aim of the present study was to investigate whether in moderate paddling there is a U-shaped relationship between oxygen uptake and stroke rate, and also whether elite kayakers apply a freely chosen stroke rate, which is energetically optimal. Eleven young male elite kayakers performed moderate kayak ergometry at preset target stroke rates of 65, 75, and 90 strokes min-1, and at a freely chosen stroke rate, while physiological responses including oxygen uptake were measured. The results showed that considering average values calculated across all participants, there was an approximately U-shaped relationship between oxygen uptake and target stroke rate with a minimum at 75 strokes min-1. The freely chosen stroke rate was 67.0 ± 6.1 strokes min-1. Thus, the freely chosen stroke rate, for the group in total, appeared to be lower and require higher oxygen uptake as compared to the energetically optimal preset target stroke rate. Eight out of 11 participants had a higher oxygen uptake (5.1% ± 6.7%, p = 0.028, across all participants) at their freely chosen stroke rate than at the preset target stroke rate, which resulted in the lowest oxygen uptake. In conclusion, an approximately U-shaped relationship between oxygen uptake and stroke rate for young elite kayakers during moderate ergometer kayaking was found. Additionally, the freely chosen stroke rate was systematically lower and, consequently, required higher oxygen uptake than the preset stroke rate, which resulted in the lowest oxygen uptake.

16.
Phys Rev Lett ; 126(17): 177203, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33988456

RESUMO

Quantum confinement leads to the emergence of several magnon modes in ultrathin layered magnetic structures. We probe the lifetime of these quantum confined modes in a model system composed of three atomic layers of Co grown on different surfaces. We demonstrate that the quantum confined magnons exhibit nonlinear decay rates, which strongly depend on the mode number, in sharp contrast to what is assumed in the classical dynamics. Combining the experimental results with those of linear-response density-functional calculations we provide a quantitative explanation for this nonlinear damping effect. The results provide new insights into the decay mechanism of spin excitations in ultrathin films and multilayers and pave the way for tuning the dynamical properties of such structures.

17.
Phys Chem Chem Phys ; 23(12): 7200-7212, 2021 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-33735351

RESUMO

We present an analysis of dielectric spectra measured for a specially designed non-polymeric asymmetric binary glass former characterized by a large difference of the component's Tg (ΔTg = 216 K). We cover the whole additive concentration range from 4% up to 90% (by mass). Two main relaxations α1 and α2 are identified, which are characterized by well separated time scales and are attributed to the dynamics associated with the high-Tg component (α1) and the low-Tg component (α2). Frequency-temperature superposition does not apply. To cope with the extraordinary spectral broadening, we introduce a model consisting of a generalized Cole-Davidson (α1) and a Havriliak-Negami function with a low frequency truncation (α2). Whereas the α1-relaxation reflects essentially homogeneous dynamics and its spectra mainly broaden on the high-frequency flank of the relaxation peak, the α2-relaxation becomes broader on the low-frequency side reflecting pronounced dynamic heterogeneity in a more or less arrested matrix of high-Tg molecules. From the extracted time constants, two glass transition temperatures Tg1 and Tg2 can be derived, showing a non-trivial concentration dependence for Tg2. Supplementary, we find a ß-relaxation. The total relaxation strength Δε strongly deviates from ideal mixing, and therefore care has to be taken interpreting the corresponding Δεαi as representation of molecular populations.

18.
J Chem Phys ; 155(2): 024504, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34266265

RESUMO

Previously, we scrutinized the dielectric spectra of a binary glass former made by a low-molecular high-Tg component 2-(m-tertbutylphenyl)-2'-tertbutyl-9,9'-spirobi[9H]fluorene (m-TPTS; Tg = 350 K) and low-Tg tripropyl phosphate (TPP; Tg = 134 K) [Körber et al., Phys. Chem. Chem. Phys. 23, 7200 (2021)]. Here, we analyze nuclear magnetic resonance (NMR) spectra and stimulated echo decays of deuterated m-TPTS-d4 (2H) and TPP (31P) and attempt to understand the dielectric spectra in terms of component specific dynamics. The high-Tg component (α1) shows relaxation similar to that of neat systems, yet with some broadening upon mixing. This correlates with high-frequency broadening of the dielectric spectra. The low-Tg component (α2) exhibits highly stretched relaxations and strong dynamic heterogeneities indicated by "two-phase" spectra, reflecting varying fractions of fast and slow liquid-like reorienting molecules. Missing for the high-Tg component, such two-phase spectra are identified down to wTPP = 0.04, indicating that isotropic reorientation prevails in the rigid high-Tg matrix stretching from close to Tg TPP to Tg1 wTPP. This correlates with low-frequency broadening of the dielectric spectra. Two Tg values are defined: Tg1 (wTPP) displays a plasticizer effect, whereas Tg2 (wTPP) passes through a maximum, signaling extreme separation of the component dynamics at low wTPP. We suggest understanding the latter counter-intuitive feature by referring to a crossover from "single glass" to "double glass" scenario revealed by recent MD simulations. Analyses reveal that a second population of TPP molecules exists, which is associated with the dynamics of the high-Tg component. However, the fractions are lower than suggested by the dielectric spectra. We discuss this discrepancy considering the role of collective dynamics probed by dielectric but not by NMR spectroscopy.

19.
J Chem Phys ; 154(23): 234506, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34241246

RESUMO

Proton Field-Cycling (FC) nuclear magnetic resonance (NMR) relaxometry is applied over a wide frequency and temperature range to get insight into the dynamic processes occurring in the plastically crystalline phase of the two isomers cyanocyclohexane (CNCH) and isocyanocyclohexane. The spin-lattice relaxation rate, R1(ω), is measured in the 0.01-30 MHz frequency range and transformed into the susceptibility representation χNMR ″ω=ωR1ω. Three relaxation processes are identified, namely, a main (α-) relaxation, a fast secondary (ß-) relaxation, and a slow relaxation; they are very similar for the two isomers. Exploiting frequency-temperature superposition, master curves of χNMR ″ωτ are constructed and analyzed for different processes. The α-relaxation displays a pronounced non-Lorentzian susceptibility with a temperature independent width parameter, and the correlation times display a non-Arrhenius temperature dependence-features indicating cooperative dynamics of the overall reorientation of the molecules. The ß-relaxation shows high similarity with secondary relaxations in structural glasses. The extracted correlation times well agree with those reported by other techniques. A direct comparison of FC NMR and dielectric master curves for CNCH yields pronounced difference regarding the non-Lorentzian spectral shape as well as the relative relaxation strength of α- and ß-relaxation. The correlation times of the slow relaxation follow an Arrhenius temperature dependence with a comparatively high activation energy. As the α-process involves liquid-like isotropic molecular reorientation, the slow process has to be attributed to vacancy diffusion, which modulates intermolecular dipole-dipole interactions, possibly accompanied by chair-chair interconversion of the cyclohexane ring. However, the low frequency relaxation features characteristic of vacancy diffusion cannot be detected due to experimental limitations.

20.
Eur J Appl Physiol ; 121(11): 3041-3049, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34286367

RESUMO

PURPOSE: History dependence can refer to the fact that parts of the human physiology (e.g., one or a group of muscles, or the nervous system) as well as functional aspects of the human (e.g., motor behaviour, or performance) depend on prior muscle activation. In the present study, it was investigated whether initial cycling at relatively low and high preset target cadences affected a subsequent freely chosen cadence at the end of the same bout of submaximal ergometer cycling. METHODS: Twenty-two participants performed a single test session, which consisted of separate bouts of submaximal ergometer cycling. In one bout, cycling at 50 rpm was followed by cycling at freely chosen cadence. In another bout, cycling at 90 rpm was followed by cycling at freely chosen cadence. In yet another bout (denoted reference), the cadence was freely chosen throughout. Behavioural (cadence), biomechanical (tangential pedal force), and physiological (heart rate) responses were measured. RESULTS: Increased cadence resulted in decreased maximal tangential pedal force in accordance with existing knowledge. Initial cycling at 50 and 90 rpm caused freely chosen cadence to be about 5% lower and higher, respectively, than the freely chosen cadence (72.4 ± 2.4 rpm) at the end of the reference bout. These differences in cadence were not accompanied by statistically significant differences in heart rate. CONCLUSION: The freely chosen cadence depended on the preset cadence applied at the beginning of the bout. This was denoted a phenomenon of motor behavioural history dependence.


Assuntos
Ciclismo/fisiologia , Esforço Físico/fisiologia , Fenômenos Biomecânicos , Ergometria , Teste de Esforço , Feminino , Humanos , Masculino , Consumo de Oxigênio/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA