Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Development ; 149(6)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35312773

RESUMO

During development, the heart grows by addition of progenitor cells to the poles of the primordial heart tube. In the zebrafish, Wilms tumor 1 transcription factor a (wt1a) and b (wt1b) genes are expressed in the pericardium, at the venous pole of the heart. From this pericardial layer, the proepicardium emerges. Proepicardial cells are subsequently transferred to the myocardial surface and form the epicardium, covering the myocardium. We found that while wt1a and wt1b expression is maintained in proepicardial cells, it is downregulated in pericardial cells that contributes cardiomyocytes to the developing heart. Sustained wt1b expression in cardiomyocytes reduced chromatin accessibility of specific genomic loci. Strikingly, a subset of wt1a- and wt1b-expressing cardiomyocytes changed their cell-adhesion properties, delaminated from the myocardium and upregulated epicardial gene expression. Thus, wt1a and wt1b act as a break for cardiomyocyte differentiation, and ectopic wt1a and wt1b expression in cardiomyocytes can lead to their transdifferentiation into epicardial-like cells.


Assuntos
Miócitos Cardíacos , Peixe-Zebra , Animais , Regulação da Expressão Gênica no Desenvolvimento , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Pericárdio/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas WT1/genética , Proteínas WT1/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
2.
Chem Rev ; 121(18): 11458-11526, 2021 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-33370102

RESUMO

Type 1 diabetes therapies that afford tighter glycemic control in a more manageable and painless manner for patients has remained a central focus of next-generation diabetes therapies. In many of these emerging technologies, namely, self-regulated insulin delivery and cell replacement therapies, hydrogels are employed to mitigate some of the most long-standing challenges. In this Review, we summarize recent developments in the use of hydrogels for both insulin delivery and insulin-producing cell therapies for type 1 diabetes management. We first outline perspectives in glucose sensitive hydrogels for smart insulin delivery, pH sensitive polymeric hydrogels for oral insulin delivery, and other physiochemical signals used to trigger insulin release from hydrogels. We, then, investigate the use of hydrogels in the encapsulation of insulin secreting cells with a special emphasis on hydrogels designed to mitigate the foreign body response, provide a suitable extracellular microenvironment, and improve mass transfer through oxygen supplementation and vascularization. Evaluations of limitations and promising directions for future research are also considered. Continuing interdisciplinary and collaborative research efforts will be required to produce hydrogels with instructive biochemical microenvironments necessary to address the enduring challenges of emerging type 1 diabetes therapies.


Assuntos
Diabetes Mellitus Tipo 1 , Hidrogéis , Diabetes Mellitus Tipo 1/tratamento farmacológico , Glucose/metabolismo , Humanos , Insulina , Polímeros
3.
Development ; 146(13)2019 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-31175121

RESUMO

The epicardium, the outer mesothelial layer enclosing the myocardium, plays key roles in heart development and regeneration. During embryogenesis, the epicardium arises from the proepicardium (PE), a cell cluster that appears in the dorsal pericardium (DP) close to the venous pole of the heart. Little is known about how the PE emerges from the pericardial mesothelium. Using a zebrafish model and a combination of genetic tools, pharmacological agents and quantitative in vivo imaging, we reveal that a coordinated collective movement of DP cells drives PE formation. We found that Bmp signaling and the actomyosin cytoskeleton promote constriction of the DP, which enables PE cells to extrude apically. We provide evidence that cell extrusion, which has been described in the elimination of unfit cells from epithelia and the emergence of hematopoietic stem cells, is also a mechanism for PE cells to exit an organized mesothelium and fulfil their developmental fate to form a new tissue layer, the epicardium.


Assuntos
Actinas/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Movimento Celular , Coração/embriologia , Pericárdio/citologia , Pericárdio/embriologia , Células-Tronco/fisiologia , Animais , Animais Geneticamente Modificados , Padronização Corporal/genética , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Movimento Celular/genética , Embrião não Mamífero , Miocárdio/citologia , Organogênese/genética , Transdução de Sinais/fisiologia , Células-Tronco/citologia , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
4.
Small ; 18(8): e2104899, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34897997

RESUMO

Encapsulation and transplantation of insulin-producing cells offer a promising curative treatment for type 1 diabetes (T1D) without immunosuppression. However, biomaterials used to encapsulate cells often elicit foreign body responses, leading to cellular overgrowth and deposition of fibrotic tissue, which in turn diminishes mass transfer to and from transplanted cells. Meanwhile, the encapsulation device must be safe, scalable, and ideally retrievable to meet clinical requirements. Here, a durable and safe nanofibrous device coated with a thin and uniform, fibrosis-mitigating, zwitterionically modified alginate hydrogel for encapsulation of islets and stem cell-derived beta (SC-ß) cells is reported. The device with a configuration that has cells encapsulated within the cylindrical wall, allowing scale-up in both radial and longitudinal directions without sacrificing mass transfer, is designed. Due to its facile mass transfer and low level of fibrotic reactions, the device supports long-term cell engraftment, correcting diabetes in C57BL6/J mice with rat islets for up to 399 days and SCID-beige mice with human SC-ß cells for up to 238 days. The scalability and retrievability in dogs are further demonstrated. These results suggest the potential of this new device for cell therapies to treat T1D and other diseases.


Assuntos
Diabetes Mellitus Experimental , Insulinas , Transplante das Ilhotas Pancreáticas , Animais , Diabetes Mellitus Experimental/terapia , Cães , Fibrose , Transplante das Ilhotas Pancreáticas/métodos , Camundongos , Camundongos SCID , Ratos
5.
Proc Natl Acad Sci U S A ; 115(16): 4188-4193, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29610343

RESUMO

In the zebrafish (Danio rerio), regeneration and fibrosis after cardiac injury are not mutually exclusive responses. Upon cardiac cryoinjury, collagen and other extracellular matrix (ECM) proteins accumulate at the injury site. However, in contrast to the situation in mammals, fibrosis is transient in zebrafish and its regression is concomitant with regrowth of the myocardial wall. Little is known about the cells producing this fibrotic tissue or how it resolves. Using novel genetic tools to mark periostin b- and collagen 1alpha2 (col1a2)-expressing cells in combination with transcriptome analysis, we explored the sources of activated fibroblasts and traced their fate. We describe that during fibrosis regression, fibroblasts are not fully eliminated but become inactivated. Unexpectedly, limiting the fibrotic response by genetic ablation of col1a2-expressing cells impaired cardiomyocyte proliferation. We conclude that ECM-producing cells are key players in the regenerative process and suggest that antifibrotic therapies might be less efficient than strategies targeting fibroblast inactivation.


Assuntos
Fibroblastos/fisiologia , Coração/fisiologia , Regeneração/fisiologia , Animais , Animais Geneticamente Modificados , Sequência de Bases , Moléculas de Adesão Celular/biossíntese , Linhagem da Célula , Temperatura Baixa/efeitos adversos , Colágeno Tipo XII/biossíntese , Colágeno Tipo XII/genética , Endocárdio/patologia , Matriz Extracelular/metabolismo , Fibrose , Regulação da Expressão Gênica , Genes Reporter , Traumatismos Cardíacos/genética , Traumatismos Cardíacos/fisiopatologia , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , RNA Mensageiro/biossíntese , Transcriptoma , Peixe-Zebra , Proteínas de Peixe-Zebra/biossíntese , Proteínas de Peixe-Zebra/genética
6.
Dev Dyn ; 249(12): 1455-1469, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33103836

RESUMO

BACKGROUND: The epicardium is the outer mesothelial layer of the heart. It encloses the myocardium and plays key roles in heart development and regeneration. It derives from the proepicardium (PE), cell clusters that appear in the dorsal pericardium (DP) close to the atrioventricular canal and the venous pole of the heart, and are released into the pericardial cavity. PE cells are advected around the beating heart until they attach to the myocardium. Bmp and Notch signaling influence PE formation, but it is unclear how both signaling pathways interact during this process in the zebrafish. RESULTS: Here, we show that the developing PE is influenced by Notch signaling derived from the endothelium. Overexpression of the intracellular receptor of notch in the endothelium enhances bmp expression, increases the number of pSmad1/5 positive cells in the DP and PE, and enhances PE formation. On the contrary, pharmacological inhibition of Notch1 impairs PE formation. bmp2b overexpression can rescue loss of PE formation in the presence of a Notch1 inhibitor, but Notch gain-of-function could not recover PE formation in the absence of Bmp signaling. CONCLUSIONS: Endothelial Notch signaling activates bmp expression in the heart tube, which in turn induces PE cluster formation from the DP layer.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Coração/embriologia , Organogênese/fisiologia , Pericárdio/embriologia , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Animais , Diferenciação Celular/fisiologia , Pericárdio/metabolismo , Peixe-Zebra
9.
J Am Acad Dermatol ; 72(1): 175-80, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25458016

RESUMO

Tanning lamps have long been considered a class I medical device under regulation by the Food and Drug Administration (FDA). A growing body of research has repeatedly documented the association between elective indoor tanning and several negative health consequences. These accepted findings have prompted action by the FDA to officially reclassify tanning lamps as a class II medical device. The main purpose of this review is to update practitioners on the current state of tanning lamp classification and highlight the practical implications of this recent change. This information can be used by clinicians to easily reference this important action, and empower patients with a better understanding of the risks associated with indoor tanning.


Assuntos
Banho de Sol , Raios Ultravioleta/efeitos adversos , Comportamento Aditivo/etiologia , Equipamentos e Provisões/classificação , Humanos , Neoplasias Cutâneas/etiologia , Estados Unidos , United States Food and Drug Administration
11.
Dev Cell ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38701784

RESUMO

The oxidative phosphorylation (OXPHOS) system is intricately organized, with respiratory complexes forming super-assembled quaternary structures whose assembly mechanisms and physiological roles remain under investigation. Cox7a2l, also known as Scaf1, facilitates complex III and complex IV (CIII-CIV) super-assembly, enhancing energetic efficiency in various species. We examined the role of Cox7a1, another Cox7a family member, in supercomplex assembly and muscle physiology. Zebrafish lacking Cox7a1 exhibited reduced CIV2 formation, metabolic alterations, and non-pathological muscle performance decline. Additionally, cox7a1-/- hearts displayed a pro-regenerative metabolic profile, impacting cardiac regenerative response. The distinct phenotypic effects of cox7a1-/- and cox7a2l-/- underscore the diverse metabolic and physiological consequences of impaired supercomplex formation, emphasizing the significance of Cox7a1 in muscle maturation within the OXPHOS system.

12.
Biol Imaging ; 3: e20, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38510170

RESUMO

In vivo fluorescence microscopy is a powerful tool to image the beating heart in its early development stages. A high acquisition frame rate is necessary to study its fast contractions, but the limited fluorescence intensity requires sensitive cameras that are often too slow. Moreover, the problem is even more complex when imaging distinct tissues in the same sample using different fluorophores. We present Paired Alternating AcQuisitions, a method to image cyclic processes in multiple channels, which requires only a single (possibly slow) camera. We generate variable temporal illumination patterns in each frame, alternating between channel-specific illuminations (fluorescence) in odd frames and a motion-encoding brightfield pattern as a common reference in even frames. Starting from the image pairs, we find the position of each reference frame in the cardiac cycle through a combination of image-based sorting and regularized curve fitting. Thanks to these estimated reference positions, we assemble multichannel videos whose frame rate is virtually increased. We characterize our method on synthetic and experimental images collected in zebrafish embryos, showing quantitative and visual improvements in the reconstructed videos over existing nongated sorting-based alternatives. Using a 15 Hz camera, we showcase a reconstructed video containing two fluorescence channels at 100 fps.

13.
Sci Rep ; 13(1): 17037, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37813860

RESUMO

Drug repurposing is an important strategy in COVID-19 treatment, but many clinically approved compounds have not been extensively studied in the context of embryogenesis, thus limiting their administration during pregnancy. Here we used the zebrafish embryo model organism to test the effects of 162 marketed drugs on cardiovascular development. Among the compounds used in the clinic for COVD-19 treatment, we found that Remdesivir led to reduced body size and heart functionality at clinically relevant doses. Ritonavir and Baricitinib showed reduced heart functionality and Molnupiravir and Baricitinib showed effects on embryo activity. Sabizabulin was highly toxic at concentrations only 5 times higher than Cmax and led to a mean mortality of 20% at Cmax. Furthermore, we tested if zebrafish could be used as a model to study inflammatory response in response to spike protein treatment and found that Remdesivir, Ritonavir, Molnupiravir, Baricitinib as well as Sabizabulin counteracted the inflammatory response related gene expression upon SARS-CoV-2 spike protein treatment. Our results show that the zebrafish allows to study immune-modulating properties of COVID-19 compounds and highlights the need to rule out secondary defects of compound treatment on embryogenesis. All results are available on a user friendly web-interface https://share.streamlit.io/alernst/covasc_dataapp/main/CoVasc_DataApp.py that provides a comprehensive overview of all observed phenotypic effects and allows personalized search on specific compounds or group of compounds. Furthermore, the presented platform can be expanded for rapid detection of developmental side effects of new compounds for treatment of COVID-19 and further viral infectious diseases.


Assuntos
Antivirais , Desenvolvimento Embrionário , Animais , Feminino , Humanos , Gravidez , Antivirais/farmacologia , COVID-19 , Tratamento Farmacológico da COVID-19 , Desenvolvimento Embrionário/efeitos dos fármacos , Ritonavir/farmacologia , SARS-CoV-2 , Peixe-Zebra , Embrião não Mamífero/efeitos dos fármacos
14.
Nat Biomed Eng ; 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38052996

RESUMO

Cellular therapies for type-1 diabetes can leverage cell encapsulation to dispense with immunosuppression. However, encapsulated islet cells do not survive long, particularly when implanted in poorly vascularized subcutaneous sites. Here we show that the induction of neovascularization via temporary controlled inflammation through the implantation of a nylon catheter can be used to create a subcutaneous cavity that supports the transplantation and optimal function of a geometrically matching islet-encapsulation device consisting of a twisted nylon surgical thread coated with an islet-seeded alginate hydrogel. The neovascularized cavity led to the sustained reversal of diabetes, as we show in immunocompetent syngeneic, allogeneic and xenogeneic mouse models of diabetes, owing to increased oxygenation, physiological glucose responsiveness and islet survival, as indicated by a computational model of mass transport. The cavity also allowed for the in situ replacement of impaired devices, with prompt return to normoglycemia. Controlled inflammation-induced neovascularization is a scalable approach, as we show with a minipig model, and may facilitate the clinical translation of immunosuppression-free subcutaneous islet transplantation.

15.
Adv Healthc Mater ; 11(19): e2200922, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35894816

RESUMO

Implanted cell-containing grafts require a robust and functional vasculature to supply oxygen and nutrients, as well as clear metabolic waste products. However, it remains challenging to fabricate tunable, vascular-promoting scaffolds without incorporating additional biologics. Here, a biphasic gel consisting of a highly porous aerogel and a degradable fibrin hydrogel for inducing vascularization is presented. The highly porous (>90%) and stable aerogel is assembled from short microfibers by being dispersed in an aqueous solution that can be 3D printed into various configurations. The biphasic gel demonstrates good compression-resistance: 70.30% Young's modulus is recovered over 20 cycles of 65% compression under water. Furthermore, it is confirmed that tissue cells and blood vessels can penetrate a thick (≈3 mm) biphasic gel in the subcutaneous space of mice. Finally, the biphasic gel doubles the vascular ingrowth compared to a composite of a commercial surgical polyester felt and a fibrin hydrogel upon subcutaneous implantation in mice after 4 weeks. The design of this biphasic gel may advance the development of vascularized scaffolds.


Assuntos
Produtos Biológicos , Hidrogéis , Neovascularização Fisiológica , Alicerces Teciduais , Animais , Fibrina , Hidrogéis/farmacologia , Camundongos , Neovascularização Fisiológica/efeitos dos fármacos , Oxigênio , Poliésteres , Engenharia Tecidual , Resíduos
16.
Int J Radiat Oncol Biol Phys ; 114(3): 478-493, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35934161

RESUMO

PURPOSE: Synchrotron-generated microbeam radiation therapy (MRT) represents an innovative preclinical type of cancer radiation therapy with an excellent therapeutic ratio. Beyond local control, metastatic spread is another important endpoint to assess the effectiveness of radiation therapy treatment. Currently, no data exist on an association between MRT and metastasis. Here, we evaluated the ability of MRT to delay B16F10 murine melanoma progression and locoregional metastatic spread. METHODS AND MATERIALS: We assessed the primary tumor response and the extent of metastasis in sentinel lymph nodes in 2 cohorts of C57BL/6J mice, one receiving a single MRT and another receiving 2 MRT treatments delivered with a 10-day interval. We compared these 2 cohorts with synchrotron broad beam-irradiated and nonirradiated mice. In addition, using multiplex quantitative platforms, we measured plasma concentrations of 34 pro- and anti-inflammatory cytokines and frequencies of immune cell subsets infiltrating primary tumors that received either 1 or 2 MRT treatments. RESULTS: Two MRT treatments were significantly more effective for local control than a single MRT. Remarkably, the second MRT also triggered a pronounced regression of out-of-radiation field locoregional metastasis. Augmentation of CXCL5, CXCL12, and CCL22 levels after the second MRT indicated that inhibition of melanoma progression could be associated with increased activity of antitumor neutrophils and T-cells. Indeed, we demonstrated elevated infiltration of neutrophils and activated T-cells in the tumors after the second MRT. CONCLUSIONS: Our study highlights the importance of monitoring metastasis after MRT and provides the first MRT fractionation schedule that promotes local and locoregional control with the potential to manage distant metastasis.


Assuntos
Melanoma , Síncrotrons , Animais , Citocinas , Melanoma/radioterapia , Camundongos , Camundongos Endogâmicos C57BL , Síndrome , Linfócitos T
17.
Nat Commun ; 13(1): 6031, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36229614

RESUMO

The delivery of encapsulated islets or stem cell-derived insulin-producing cells (i.e., bioartificial pancreas devices) may achieve a functional cure for type 1 diabetes, but their efficacy is limited by mass transport constraints. Modeling such constraints is thus desirable, but previous efforts invoke simplifications which limit the utility of their insights. Herein, we present a computational platform for investigating the therapeutic capacity of generic and user-programmable bioartificial pancreas devices, which accounts for highly influential stochastic properties including the size distribution and random localization of the cells. We first apply the platform in a study which finds that endogenous islet size distribution variance significantly influences device potency. Then we pursue optimizations, determining ideal device structures and estimates of the curative cell dose. Finally, we propose a new, device-specific islet equivalence conversion table, and develop a surrogate machine learning model, hosted on a web application, to rapidly produce these coefficients for user-defined devices.


Assuntos
Diabetes Mellitus Tipo 1 , Insulinas , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Diabetes Mellitus Tipo 1/terapia , Humanos , Insulina , Pâncreas
18.
Nat Commun ; 13(1): 1677, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35354817

RESUMO

The mesothelium lines body cavities and surrounds internal organs, widely contributing to homeostasis and regeneration. Mesothelium disruptions cause visceral anomalies and mesothelioma tumors. Nonetheless, the embryonic emergence of mesothelia remains incompletely understood. Here, we track mesothelial origins in the lateral plate mesoderm (LPM) using zebrafish. Single-cell transcriptomics uncovers a post-gastrulation gene expression signature centered on hand2 in distinct LPM progenitor cells. We map mesothelial progenitors to lateral-most, hand2-expressing LPM and confirm conservation in mouse. Time-lapse imaging of zebrafish hand2 reporter embryos captures mesothelium formation including pericardium, visceral, and parietal peritoneum. We find primordial germ cells migrate with the forming mesothelium as ventral migration boundary. Functionally, hand2 loss disrupts mesothelium formation with reduced progenitor cells and perturbed migration. In mouse and human mesothelioma, we document expression of LPM-associated transcription factors including Hand2, suggesting re-initiation of a developmental program. Our data connects mesothelium development to Hand2, expanding our understanding of mesothelial pathologies.


Assuntos
Mesotelioma , Peixe-Zebra , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Epitélio/metabolismo , Mesotelioma/genética , Camundongos , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
19.
Nat Commun ; 12(1): 5846, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34615868

RESUMO

Inadequate oxygenation is a major challenge in cell encapsulation, a therapy which holds potential to treat many diseases including type I diabetes. In such systems, cellular oxygen (O2) delivery is limited to slow passive diffusion from transplantation sites through the poorly O2-soluble encapsulating matrix, usually a hydrogel. This constrains the maximum permitted distance between the encapsulated cells and host site to within a few hundred micrometers to ensure cellular function. Inspired by the natural gas-phase tracheal O2 delivery system of insects, we present herein the design of a biomimetic scaffold featuring internal continuous air channels endowed with 10,000-fold higher O2 diffusivity than hydrogels. We incorporate the scaffold into a bulk hydrogel containing cells, which facilitates rapid O2 transport through the whole system to cells several millimeters away from the device-host boundary. A computational model, validated by in vitro analysis, predicts that cells and islets maintain high viability even in a thick (6.6 mm) device. Finally, the therapeutic potential of the device is demonstrated through the correction of diabetes in immunocompetent mice using rat islets for over 6 months.


Assuntos
Oxigênio/química , Animais , Biomimética , Encapsulamento de Células , Sobrevivência Celular/genética , Sobrevivência Celular/fisiologia , Células Cultivadas , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Hidrogéis/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos Sprague-Dawley
20.
Sci Adv ; 7(20)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33990318

RESUMO

Cell encapsulation represents a promising therapeutic strategy for many hormone-deficient diseases such as type 1 diabetes (T1D). However, adequate oxygenation of the encapsulated cells remains a challenge, especially in the poorly oxygenated subcutaneous site. Here, we present an encapsulation system that generates oxygen (O2) for the cells from their own waste product, carbon dioxide (CO2), in a self-regulated (i.e., "inverse breathing") way. We leveraged a gas-solid (CO2-lithium peroxide) reaction that was completely separated from the aqueous cellular environment by a gas permeable membrane. O2 measurements and imaging validated CO2-responsive O2 release, which improved cell survival in hypoxic conditions. Simulation-guided optimization yielded a device that restored normoglycemia of immunocompetent diabetic mice for over 3 months. Furthermore, functional islets were observed in scaled-up device implants in minipigs retrieved after 2 months. This inverse breathing device provides a potential system to support long-term cell function in the clinically attractive subcutaneous site.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA