Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Mol Psychiatry ; 28(3): 1057-1063, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36639510

RESUMO

Many therapeutic interventions in psychiatry can be viewed as attempts to influence the brain's large-scale, dynamic network state transitions. Building on connectome-based graph analysis and control theory, Network Control Theory is emerging as a powerful tool to quantify network controllability-i.e., the influence of one brain region over others regarding dynamic network state transitions. If and how network controllability is related to mental health remains elusive. Here, from Diffusion Tensor Imaging data, we inferred structural connectivity and inferred calculated network controllability parameters to investigate their association with genetic and familial risk in patients diagnosed with major depressive disorder (MDD, n = 692) and healthy controls (n = 820). First, we establish that controllability measures differ between healthy controls and MDD patients while not varying with current symptom severity or remission status. Second, we show that controllability in MDD patients is associated with polygenic scores for MDD and psychiatric cross-disorder risk. Finally, we provide evidence that controllability varies with familial risk of MDD and bipolar disorder as well as with body mass index. In summary, we show that network controllability is related to genetic, individual, and familial risk in MDD patients. We discuss how these insights into individual variation of network controllability may inform mechanistic models of treatment response prediction and personalized intervention-design in mental health.


Assuntos
Conectoma , Transtorno Depressivo Maior , Humanos , Imagem de Tensor de Difusão , Predisposição Genética para Doença , Imageamento por Ressonância Magnética/métodos , Encéfalo
2.
Bioinformatics ; 34(24): 4205-4212, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-29945233

RESUMO

Motivation: The application of next-generation sequencing in research and particularly in clinical routine requires valid variant calling results. However, evaluation of several commonly used tools has pointed out that not a single tool meets this requirement. False positive as well as false negative calls necessitate additional experiments and extensive manual work. Intelligent combination and output filtration of different tools could significantly improve the current situation. Results: We developed appreci8, an automatic variant calling pipeline for calling single nucleotide variants and short indels by combining and filtering the output of eight open-source variant calling tools, based on a novel artifact- and polymorphism score. Appreci8 was trained on two data sets from patients with myelodysplastic syndrome, covering 165 Illumina samples. Subsequently, appreci8's performance was tested on five independent data sets, covering 513 samples. Variation in sequencing platform, target region and disease entity was considered. All calls were validated by re-sequencing on the same platform, a different platform or expert-based review. Sensitivity of appreci8 ranged between 0.93 and 1.00, while positive predictive value ranged between 0.65 and 1.00. In all cases, appreci8 showed superior performance compared to any evaluated alternative approach. Availability and implementation: Appreci8 is freely available at https://hub.docker.com/r/wwuimi/appreci8/. Sequencing data (BAM files) of the 678 patients analyzed with appreci8 have been deposited into the NCBI Sequence Read Archive (BioProjectID: 388411; https://www.ncbi.nlm.nih.gov/bioproject/PRJNA388411). Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Polimorfismo de Nucleotídeo Único , Software , Biologia Computacional , Humanos , Síndromes Mielodisplásicas/genética
4.
Comput Biol Med ; 179: 108845, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39002314

RESUMO

BACKGROUND: Brain extraction in magnetic resonance imaging (MRI) data is an important segmentation step in many neuroimaging preprocessing pipelines. Image segmentation is one of the research fields in which deep learning had the biggest impact in recent years. Consequently, traditional brain extraction methods are now being replaced by deep learning-based methods. METHOD: Here, we used a unique dataset compilation comprising 7837 T1-weighted (T1w) MR images from 191 different OpenNeuro datasets in combination with advanced deep learning methods to build a fast, high-precision brain extraction tool called deepbet. RESULTS: deepbet sets a novel state-of-the-art performance during cross-dataset validation with a median Dice score (DSC) of 99.0 on unseen datasets, outperforming the current best performing deep learning (DSC=97.9) and classic (DSC=96.5) methods. While current methods are more sensitive to outliers, deepbet achieves a Dice score of >97.4 across all 7837 images from 191 different datasets. This robustness was additionally tested in 5 external datasets, which included challenging clinical MR images. During visual exploration of each method's output which resulted in the lowest Dice score, major errors could be found for all of the tested tools except deepbet. Finally, deepbet uses a compute efficient variant of the UNet architecture, which accelerates brain extraction by a factor of ≈10 compared to current methods, enabling the processing of one image in ≈2 s on low level hardware. CONCLUSIONS: In conclusion, deepbet demonstrates superior performance and reliability in brain extraction across a wide range of T1w MR images of adults, outperforming existing top tools. Its high minimal Dice score and minimal objective errors, even in challenging conditions, validate deepbet as a highly dependable tool for accurate brain extraction. deepbet can be conveniently installed via "pip install deepbet" and is publicly accessible at https://github.com/wwu-mmll/deepbet.

5.
Comput Biol Med ; 179: 108820, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-39002319

RESUMO

BACKGROUND AND OBJECTIVE: Flow cytometry is a widely used technique for identifying cell populations in patient-derived fluids, such as peripheral blood (PB) or cerebrospinal fluid (CSF). Despite its ubiquity in research and clinical practice, the process of gating, i.e., manually identifying cell types, is labor-intensive and error-prone. The objective of this study is to address this challenge by introducing GateNet, a neural network architecture designed for fully end-to-end automated gating without the need for correcting batch effects. METHODS: For this study a unique dataset is used which comprises over 8,000,000 events from N = 127 PB and CSF samples which were manually labeled independently by four experts. Applying cross-validation, the classification performance of GateNet is compared to the human experts performance. Additionally, GateNet is applied to a publicly available dataset to evaluate generalization. The classification performance is measured using the F1 score. RESULTS: GateNet achieves F1 scores ranging from 0.910 to 0.997 demonstrating human-level performance on samples unseen during training. In the publicly available dataset, GateNet confirms its generalization capabilities with an F1 score of 0.936. Importantly, we also show that GateNet only requires ≈10 samples to reach human-level performance. Finally, gating with GateNet only takes 15 microseconds per event utilizing graphics processing units (GPU). CONCLUSIONS: GateNet enables fully end-to-end automated gating in flow cytometry, overcoming the labor-intensive and error-prone nature of manual adjustments. The neural network achieves human-level performance on unseen samples and generalizes well to diverse datasets. Notably, its data efficiency, requiring only ∼10 samples to reach human-level performance, positions GateNet as a widely applicable tool across various domains of flow cytometry.

6.
JAMA Psychiatry ; 81(4): 386-395, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38198165

RESUMO

Importance: Biological psychiatry aims to understand mental disorders in terms of altered neurobiological pathways. However, for one of the most prevalent and disabling mental disorders, major depressive disorder (MDD), no informative biomarkers have been identified. Objective: To evaluate whether machine learning (ML) can identify a multivariate biomarker for MDD. Design, Setting, and Participants: This study used data from the Marburg-Münster Affective Disorders Cohort Study, a case-control clinical neuroimaging study. Patients with acute or lifetime MDD and healthy controls aged 18 to 65 years were recruited from primary care and the general population in Münster and Marburg, Germany, from September 11, 2014, to September 26, 2018. The Münster Neuroimaging Cohort (MNC) was used as an independent partial replication sample. Data were analyzed from April 2022 to June 2023. Exposure: Patients with MDD and healthy controls. Main Outcome and Measure: Diagnostic classification accuracy was quantified on an individual level using an extensive ML-based multivariate approach across a comprehensive range of neuroimaging modalities, including structural and functional magnetic resonance imaging and diffusion tensor imaging as well as a polygenic risk score for depression. Results: Of 1801 included participants, 1162 (64.5%) were female, and the mean (SD) age was 36.1 (13.1) years. There were a total of 856 patients with MDD (47.5%) and 945 healthy controls (52.5%). The MNC replication sample included 1198 individuals (362 with MDD [30.1%] and 836 healthy controls [69.9%]). Training and testing a total of 4 million ML models, mean (SD) accuracies for diagnostic classification ranged between 48.1% (3.6%) and 62.0% (4.8%). Integrating neuroimaging modalities and stratifying individuals based on age, sex, treatment, or remission status does not enhance model performance. Findings were replicated within study sites and also observed in structural magnetic resonance imaging within MNC. Under simulated conditions of perfect reliability, performance did not significantly improve. Analyzing model errors suggests that symptom severity could be a potential focus for identifying MDD subgroups. Conclusion and Relevance: Despite the improved predictive capability of multivariate compared with univariate neuroimaging markers, no informative individual-level MDD biomarker-even under extensive ML optimization in a large sample of diagnosed patients-could be identified.


Assuntos
Transtorno Depressivo Maior , Humanos , Feminino , Masculino , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/patologia , Imagem de Tensor de Difusão , Estudos de Coortes , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética , Biomarcadores
7.
Front Aging Neurosci ; 15: 1085153, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37920384

RESUMO

Background: Controllability is a measure of the brain's ability to orchestrate neural activity which can be quantified in terms of properties of the brain's network connectivity. Evidence from the literature suggests that aging can exert a general effect on whole-brain controllability. Mounting evidence, on the other hand, suggests that parenthood and motherhood in particular lead to long-lasting changes in brain architecture that effectively slow down brain aging. We hypothesize that parenthood might preserve brain controllability properties from aging. Methods: In a sample of 814 healthy individuals (aged 33.9 ± 12.7 years, 522 females), we estimate whole-brain controllability and compare the aging effects in subjects with vs. those without children. We use diffusion tensor imaging (DTI) to estimate the brain structural connectome. The level of brain control is then calculated from the connectomic properties of the brain structure. Specifically, we measure the network control over many low-energy state transitions (average controllability) and the network control over difficult-to-reach states (modal controllability). Results and conclusion: In nulliparous females, whole-brain average controllability increases, and modal controllability decreases with age, a trend that we do not observe in parous females. Statistical comparison of the controllability metrics shows that modal controllability is higher and average controllability is lower in parous females compared to nulliparous females. In men, we observed the same trend, but the difference between nulliparous and parous males do not reach statistical significance. Our results provide strong evidence that parenthood contradicts aging effects on brain controllability and the effect is stronger in mothers.

8.
PNAS Nexus ; 2(2): pgad032, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36874281

RESUMO

Electroconvulsive Therapy (ECT) is arguably the most effective intervention for treatment-resistant depression. While large interindividual variability exists, a theory capable of explaining individual response to ECT remains elusive. To address this, we posit a quantitative, mechanistic framework of ECT response based on Network Control Theory (NCT). Then, we empirically test our approach and employ it to predict ECT treatment response. To this end, we derive a formal association between Postictal Suppression Index (PSI)-an ECT seizure quality index-and whole-brain modal and average controllability, NCT metrics based on white-matter brain network architecture, respectively. Exploiting the known association of ECT response and PSI, we then hypothesized an association between our controllability metrics and ECT response mediated by PSI. We formally tested this conjecture in N = 50 depressive patients undergoing ECT. We show that whole-brain controllability metrics based on pre-ECT structural connectome data predict ECT response in accordance with our hypotheses. In addition, we show the expected mediation effects via PSI. Importantly, our theoretically motivated metrics are at least on par with extensive machine learning models based on pre-ECT connectome data. In summary, we derived and tested a control-theoretic framework capable of predicting ECT response based on individual brain network architecture. It makes testable, quantitative predictions regarding individual therapeutic response, which are corroborated by strong empirical evidence. Our work might constitute a starting point for a comprehensive, quantitative theory of personalized ECT interventions rooted in control theory.

9.
JAMA Psychiatry ; 79(9): 879-888, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35895072

RESUMO

Importance: Identifying neurobiological differences between patients with major depressive disorder (MDD) and healthy individuals has been a mainstay of clinical neuroscience for decades. However, recent meta-analyses have raised concerns regarding the replicability and clinical relevance of brain alterations in depression. Objective: To quantify the upper bounds of univariate effect sizes, estimated predictive utility, and distributional dissimilarity of healthy individuals and those with depression across structural magnetic resonance imaging (MRI), diffusion-tensor imaging, and functional task-based as well as resting-state MRI, and to compare results with an MDD polygenic risk score (PRS) and environmental variables. Design, Setting, and Participants: This was a cross-sectional, case-control clinical neuroimaging study. Data were part of the Marburg-Münster Affective Disorders Cohort Study. Patients with depression and healthy controls were recruited from primary care and the general population in Münster and Marburg, Germany. Study recruitment was performed from September 11, 2014, to September 26, 2018. The sample comprised patients with acute and chronic MDD as well as healthy controls in the age range of 18 to 65 years. Data were analyzed from October 29, 2020, to April 7, 2022. Main Outcomes and Measures: Primary analyses included univariate partial effect size (η2), classification accuracy, and distributional overlapping coefficient for healthy individuals and those with depression across neuroimaging modalities, controlling for age, sex, and additional modality-specific confounding variables. Secondary analyses included patient subgroups for acute or chronic depressive status. Results: A total of 1809 individuals (861 patients [47.6%] and 948 controls [52.4%]) were included in the analysis (mean [SD] age, 35.6 [13.2] years; 1165 female patients [64.4%]). The upper bound of the effect sizes of the single univariate measures displaying the largest group difference ranged from partial η2 of 0.004 to 0.017, and distributions overlapped between 87% and 95%, with classification accuracies ranging between 54% and 56% across neuroimaging modalities. This pattern remained virtually unchanged when considering either only patients with acute or chronic depression. Differences were comparable with those found for PRS but substantially smaller than for environmental variables. Conclusions and Relevance: Results of this case-control study suggest that even for maximum univariate biological differences, deviations between patients with MDD and healthy controls were remarkably small, single-participant prediction was not possible, and similarity between study groups dominated. Biological psychiatry should facilitate meaningful outcome measures or predictive approaches to increase the potential for a personalization of the clinical practice.


Assuntos
Transtorno Depressivo Maior , Adolescente , Adulto , Idoso , Biomarcadores , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Estudos de Casos e Controles , Estudos de Coortes , Estudos Transversais , Depressão , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/fisiopatologia , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Pessoa de Meia-Idade , Neuroimagem/métodos , Adulto Jovem
10.
Sci Adv ; 8(1): eabg9471, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34985964

RESUMO

The deviation between chronological age and age predicted from neuroimaging data has been identified as a sensitive risk marker of cross-disorder brain changes, growing into a cornerstone of biological age research. However, machine learning models underlying the field do not consider uncertainty, thereby confounding results with training data density and variability. Also, existing models are commonly based on homogeneous training sets, often not independently validated, and cannot be shared because of data protection issues. Here, we introduce an uncertainty-aware, shareable, and transparent Monte Carlo dropout composite quantile regression (MCCQR) Neural Network trained on N = 10,691 datasets from the German National Cohort. The MCCQR model provides robust, distribution-free uncertainty quantification in high-dimensional neuroimaging data, achieving lower error rates compared with existing models. In two examples, we demonstrate that it prevents spurious associations and increases power to detect deviant brain aging. We make the pretrained model and code publicly available.

11.
PLoS One ; 16(7): e0254062, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34288935

RESUMO

PHOTONAI is a high-level Python API designed to simplify and accelerate machine learning model development. It functions as a unifying framework allowing the user to easily access and combine algorithms from different toolboxes into custom algorithm sequences. It is especially designed to support the iterative model development process and automates the repetitive training, hyperparameter optimization and evaluation tasks. Importantly, the workflow ensures unbiased performance estimates while still allowing the user to fully customize the machine learning analysis. PHOTONAI extends existing solutions with a novel pipeline implementation supporting more complex data streams, feature combinations, and algorithm selection. Metrics and results can be conveniently visualized using the PHOTONAI Explorer and predictive models are shareable in a standardized format for further external validation or application. A growing add-on ecosystem allows researchers to offer data modality specific algorithms to the community and enhance machine learning in the areas of the life sciences. Its practical utility is demonstrated on an exemplary medical machine learning problem, achieving a state-of-the-art solution in few lines of code. Source code is publicly available on Github, while examples and documentation can be found at www.photon-ai.com.


Assuntos
Aprendizado de Máquina , Software , Algoritmos , Conjuntos de Dados como Assunto , Redes Neurais de Computação , Fluxo de Trabalho
12.
PLoS One ; 13(6): e0199242, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29933373

RESUMO

INTRODUCTION: A required step for presenting results of clinical studies is the declaration of participants demographic and baseline characteristics as claimed by the FDAAA 801. The common workflow to accomplish this task is to export the clinical data from the used electronic data capture system and import it into statistical software like SAS software or IBM SPSS. This software requires trained users, who have to implement the analysis individually for each item. These expenditures may become an obstacle for small studies. Objective of this work is to design, implement and evaluate an open source application, called ODM Data Analysis, for the semi-automatic analysis of clinical study data. METHODS: The system requires clinical data in the CDISC Operational Data Model format. After uploading the file, its syntax and data type conformity of the collected data is validated. The completeness of the study data is determined and basic statistics, including illustrative charts for each item, are generated. Datasets from four clinical studies have been used to evaluate the application's performance and functionality. RESULTS: The system is implemented as an open source web application (available at https://odmanalysis.uni-muenster.de) and also provided as Docker image which enables an easy distribution and installation on local systems. Study data is only stored in the application as long as the calculations are performed which is compliant with data protection endeavors. Analysis times are below half an hour, even for larger studies with over 6000 subjects. DISCUSSION: Medical experts have ensured the usefulness of this application to grant an overview of their collected study data for monitoring purposes and to generate descriptive statistics without further user interaction. The semi-automatic analysis has its limitations and cannot replace the complex analysis of statisticians, but it can be used as a starting point for their examination and reporting.


Assuntos
Análise de Dados , Software , Estatística como Assunto , Benchmarking , Humanos , Internet , Reprodutibilidade dos Testes , Interface Usuário-Computador
14.
Magn Reson Chem ; 42(9): 721-36, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15307053

RESUMO

Rhodium is used for a number of large processes that rely on homogeneous rhodium-catalyzed reactions, for instance rhodium-catalyzed hydroformylation of alkenes, carbonylation of methanol to acetic acid and hydrodesulfurization of thiophene derivatives (in crude oil). Many laboratory applications in organometallic chemistry and catalysis involve organorhodium chemistry and a wealth of rhodium coordination compounds is known. For these and other areas, 103Rh NMR spectroscopy appears to be a very useful analytical tool. In this review, most of the literature concerning 103Rh NMR spectroscopy published from 1989 up to and including 2003 has been covered. After an introduction to several experimental methods for the detection of the insensitive 103Rh nucleus, a discussion of factors affecting the transition metal chemical shift is given. Computational aspects and calculations of chemical shifts are also briefly addressed. Next, the application of 103Rh NMR in coordination and organometallic chemistry is elaborated in more detail by highlighting recent developments in measurement and interpretation of 103Rh NMR data, in relation to rhodium-assisted reactions and homogeneous catalysis. The dependence of the 103Rh chemical shift on the ligands at rhodium in the first coordination sphere, on the complex geometry, oxidation state, temperature, solvent and concentration is treated. Several classes of compounds and special cases such as chiral rhodium compounds are reviewed. Finally, a section on scalar coupling to rhodium is provided.


Assuntos
Algoritmos , Espectroscopia de Ressonância Magnética/métodos , Modelos Moleculares , Ródio/análise , Ródio/química , Conformação Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA