Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Plant Cell ; 35(12): 4238-4265, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37648264

RESUMO

Variegation is a rare type of mosaicism not fully studied in plants, especially fruits. We examined red and white sections of grape (Vitis vinifera cv. 'Béquignol') variegated berries and found that accumulation of products from branches of the phenylpropanoid and isoprenoid pathways showed an opposite tendency. Light-responsive flavonol and monoterpene levels increased in anthocyanin-depleted areas in correlation with increasing MYB24 expression. Cistrome analysis suggested that MYB24 binds to the promoters of 22 terpene synthase (TPS) genes, as well as 32 photosynthesis/light-related genes, including carotenoid pathway members, the flavonol regulator HY5 HOMOLOGUE (HYH), and other radiation response genes. Indeed, TPS35, TPS09, the carotenoid isomerase gene CRTISO2, and HYH were activated in the presence of MYB24 and MYC2. We suggest that MYB24 modulates ultraviolet and high-intensity visible light stress responses that include terpene and flavonol synthesis and potentially affects carotenoids. The MYB24 regulatory network is developmentally triggered after the onset of berry ripening, while the absence of anthocyanin sunscreens accelerates its activation, likely in a dose-dependent manner due to increased radiation exposure. Anthocyanins and flavonols in variegated berry skins act as effective sunscreens but for different wavelength ranges. The expression patterns of stress marker genes in red and white sections of 'Béquignol' berries strongly suggest that MYB24 promotes light stress amelioration but only partly succeeds during late ripening.


Assuntos
Vitis , Vitis/genética , Vitis/metabolismo , Antocianinas/metabolismo , Frutas/genética , Frutas/metabolismo , Terpenos/metabolismo , Protetores Solares , Flavonóis/metabolismo , Carotenoides/metabolismo , Regulação da Expressão Gênica de Plantas
2.
Chemphyschem ; 25(9): e202300901, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38345196

RESUMO

Beryllium silicate, recognized as the mineral phenakite (Be2SiO4), is a prevalent constituent in Earth's upper mantle. This study employs density-functional theory (DFT) calculations to explore the structural, mechanical, dynamical, thermodynamic, and electronic characteristics of this compound under both ambient and high-pressure conditions. Under ideal conditions, the DFT calculations align closely with experimental findings, confirming the mechanical and dynamical stability of the crystalline structure. Phenakite is characterized as an indirect band gap insulator, possessing an estimated band gap of 7.83 eV. Remarkably, oxygen states make a substantial contribution to both the upper limit of the valence band and the lower limit of the conduction band. We delved into the thermodynamic properties of the compound, including coefficients of thermal expansion, free energy, entropy, heat capacity, and the Gruneisen parameter across different temperatures. Our findings suggest that Be2SiO4 displays an isotropic behavior based on estimated anisotropic factors. Interestingly, our investigation revealed that, under pressure, the compression of phenakite is not significantly affected by bond angle bending.

3.
Inorg Chem ; 63(15): 6898-6908, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38554090

RESUMO

This paper reports an experimental high-pressure study of natural mineral ferberite (FeWO4) up to 20 GPa using diamond-anvil cells. First-principles calculations have been used to support and complement the results of the experimental techniques. X-ray diffraction patterns show that FeWO4 crystallizes in the wolframite structure at ambient pressure and is stable over a wide pressure range, as is the case for other wolframite AWO4 (A = Mg, Mn, Co, Ni, Zn, or Cd) compounds. No structural phase transitions were observed for FeWO4, in the pressure range investigated. The bulk modulus (B0 = 136(3) GPa) obtained from the equation of state is very close to the recently reported value for CoWO4 (131(3) GPa). According to our optical absorption measurements, FeWO4 has an indirect band gap that decreases from 2.00(5) eV at ambient pressure to 1.56(5) eV at 16 GPa. First-principles simulations yield three infrared-active phonons, which soften with pressure, in contrast to the Raman-active phonons. These results agree with Raman spectroscopy experiments on FeWO4 and are similar to those previously reported for MgWO4. Our results on FeWO4 are also compared to previous results on other wolframite-type compounds.

4.
Inorg Chem ; 62(28): 10928-10939, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37390357

RESUMO

This work presents two isostructural Cu(I)-I 2-fluoropyrazine (Fpyz) luminescent and semiconducting 2D coordination polymers (CPs). Hydrothermal synthesis allows the growth of P-1 space group single crystals, whereas solvent-free synthesis produces polycrystals. Via recrystallization in acetonitrile, P21 space group single crystals are obtained. Both show a reversible luminescent response to temperature and pressure. Structure determination by single-crystal X-ray diffraction at 200 and 100 K allows us to understand their response as a function of temperature. Applying hydrostatic/uniaxial pressure or grinding also generates significant variations in their emission. The high structural flexibility of the Cu(I)-I chain is significantly linked to the corresponding alterations in structure. Remarkably, pressure can increase the conductivity by up to 3 orders of magnitude. Variations in resistivity are consistent with changes in the band gap energy. The experimental results are in agreement with the DFT calculations. These properties may allow the use of these CPs as optical pressure or temperature sensors. In addition, their behavior as a heterogeneous photocatalyst of persistent organic dyes has also been investigated.

5.
Phys Chem Chem Phys ; 25(40): 27457-27467, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37796450

RESUMO

The discovery of novel materials for catalytic purposes that are highly stable is one of the main challenges nowadays for reducing our dependence on fossil fuels. Here, low-dimensional PbTiO3 is introduced as an electrocatalyst using first-principles calculations. Density-functional theory calculations indicate that 2D-PbTiO3 is dynamically and thermodynamically stable. Our results show that a single oxygen defect vacancy in 2D-PbTiO3 can play a key role in enhancing the hydrogen evolution reaction (HER), together with the Ti atoms. Our study concludes that the Volmer-Heyrovsky mechanism is a more favorable route to achieve HER than the Volmer-Tafel mechanism, including solvation and vacuum conditions.

6.
J Am Chem Soc ; 144(43): 20099-20108, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36260811

RESUMO

The high-pressure crystal structure evolution of CH3NH3PbBr3 (MAPbBr3) perovskite has been investigated by single-crystal X-ray diffraction and synchrotron-based powder X-ray diffraction. Single-crystal X-ray diffraction reveals that the crystal structure of MAPbBr3 undergoes two phase transitions following the space-group sequence: Pm3̅m → Im3̅ → Pmn21, unveiling the occurrence of a nonpolar/polar transition (Im3̅ → Pmn21). The transitions take place at around 0.8 and 1.8 GPa, respectively. This result contradicts the previously reported phase transition sequence: Pm3̅m → Im3̅ →Pnma. In this work, the crystal structures of each of the three phases are determined from single-crystal X-ray diffraction analysis, which is later supported by Rietveld refinement of powder X-ray diffraction patterns. The pressure dependence of the crystal lattice parameters and unit-cell volumes are determined from the two aforementioned techniques, as well as the bulk moduli for each phase. The bandgap behavior of MAPbBr3 has been studied up to around 4 GPa, by means of single-crystal optical absorption experiments. The evolution of the bandgap has been well explained using the pressure dependence of the Pb-Br bond distance and Pb-Br-Pb angles as determined from single-crystal X-ray diffraction experiments.

7.
Inorg Chem ; 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35157423

RESUMO

The understanding of the interplay between crystal structure and electronic structure in semiconductor materials is of great importance due to their potential technological applications. Pressure is an ideal external control parameter to tune the crystal structures of semiconductor materials in order to investigate their emergent piezo-electrical and optical properties. Accordingly, we investigate here the high-pressure behavior of the semiconducting antiferromagnetic material ß-Cu2V2O7, finding it undergoes a pressure-induced phase transition to γ-Cu2V2O7 below 4000 atm. The pressure-induced structural and electronic evolutions are investigated by single-crystal X-ray diffraction, absorption spectroscopy and ab initio density functional theory calculations. ß-Cu2V2O7 has previously been suggested as a promising photocatalyst for water splitting. Now, these new results suggest that ß-Cu2V2O7 could also be of interest with regards to barocaloric effects, due to the low phase -transition pressure, in particular because it is a multiferroic material. Moreover, the phase transition involves an electronic band gap decrease of approximately 0.2 eV (from 1.93 to 1.75 eV) and a large structural volume collapse of approximately 7%.

8.
Inorg Chem ; 59(9): 6623-6630, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32302127

RESUMO

We have studied the high-pressure behavior of FeVO4 by means of single-crystal X-ray diffraction (XRD) and density functional theory (DFT) calculations. We have found that the structural sequence of FeVO4 is different from that previously assumed. In particular, we have discovered a new high-pressure phase at 2.11(4) GPa (FeVO4-I'), which was not detected by previous powder XRD studies. We have determined that FeVO4, under compression (at room temperature), first transforms at 2.11(4) GPa from the ambient-pressure triclinic structure (FeVO4-I) to a second previously unknown triclinic structure (FeVO4-I'), which experiences a subsequent phase transition at 4.80(4) GPa to a monoclinic structure (FeVO4-II'), which was also previously detected in powder XRD experiments. Single-crystal XRD has enabled these novel findings as well as an accurate determination of the crystal structure of FeVO4 polymorphs under high-pressure conditions. The crystal structure of all polymorphs has been accurately solved at all measured pressures. The pressure dependence of the unit-cell parameters and polyhedral coordination have been obtained and are discussed. The room-temperature equation of state and the principal axes of the isothermal compressibility tensor of FeVO4-I and FeVO4-I' have also been determined. The structural phase transition observed here between these two triclinic structures at 2.11(4) GPa implies abrupt coordination polyhedra modifications, including coordination number changes. DFT calculations support the conclusions extracted from our experiments.

9.
Inorg Chem ; 59(24): 18325-18337, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33291884

RESUMO

In the pursuit of a systematic characterization of rare-earth vanadates under compression, in this work we present a multifaceted study of the phase behavior of zircon-type orthovanadate PrVO4 under high-pressure conditions, up to 24 GPa. We have found that PrVO4 undergoes a zircon to monazite transition at around 6 GPa, confirming previous results found by Raman experiments. A second transition takes place above 14 GPa, to a BaWO4-II type structure. The zircon to monazite structural sequence is an irreversible first-order transition, accompanied by a volume collapse of about 9.6%. The monazite phase is thus a metastable polymorph of PrVO4. The monazite-BaWO4-II transition is found instead to be reversible and occurs with a similar volume change. Here we report and discuss the axial and bulk compressibility of all phases. We also compare our results with those for other rare-earth orthovanadates. Finally, by means of optical-absorption experiments and resistivity measurements, we determined the effect of pressure on the electronic properties of PrVO4. We found that the zircon-monazite transition produces a collapse of the band gap and an abrupt decrease in the resistivity. The physical reasons for this behavior are discussed. Density functional theory simulations support our conclusions.

10.
Inorg Chem ; 59(7): 4882-4894, 2020 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-32191461

RESUMO

We present a structural and optical characterization of magnetoelastic zircon-type TmVO4 at ambient pressure and under high pressure. The properties under high pressure have been determined experimentally under hydrostatic conditions and theoretically using density functional theory. By powder X-ray diffraction we show that TmVO4 undergoes a first-order irreversible phase transition to a scheelite structure above 6 GPa. We have also determined (from powder and single-crystal X-ray diffraction) the bulk moduli of both phases and found that their compressibilities are anisotropic. The band gap of TmVO4 is found to be Eg = 3.7(2) eV. Under compression the band gap opens linearly, until it undergoes a huge collapse following the structural phase transition (ΔEg = 1.15 eV). Ab initio structural and free energy calculations support our findings. Moreover, calculations of the band structure and density of states reveal that for both zircon and scheelite TmVO4 the band gap is entirely determined by the V 3d and O 2p states of the VO43- ion. The behavior of the band gap can thus be understood entirely in terms of the structural modifications of the VO4 units under compression. Additionally, we have calculated the evolution of the infrared and Raman phonons of both phases upon compression. The presence of soft modes is related to the dynamic instability of the low-pressure phase and to the phase transition.

11.
Inorg Chem ; 59(1): 287-307, 2020 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-31876414

RESUMO

SbPO4 is a complex monoclinic layered material characterized by a strong activity of the nonbonding lone electron pair (LEP) of Sb. The strong cation LEP leads to the formation of layers piled up along the a axis and linked by weak Sb-O electrostatic interactions. In fact, Sb has 4-fold coordination with O similarly to what occurs with the P-O coordination, despite the large difference in ionic radii and electronegativity between both elements. Here we report a joint experimental and theoretical study of the structural and vibrational properties of SbPO4 at high pressure. We show that SbPO4 is not only one of the most compressible phosphates but also one of the most compressible compounds of the ABO4 family. Moreover, it has a considerable anisotropic compression behavior, with the largest compression occurring along a direction close to the a axis and governed by the compression of the LEP and the weak interlayer Sb-O bonds. The strong compression along the a axis leads to a subtle modification of the monoclinic crystal structure above 3 GPa, leading from a 2D to a 3D material. Moreover, the onset of a reversible pressure-induced phase transition is observed above 9 GPa, which is completed above 20 GPa. We propose that the high-pressure phase is a triclinic distortion of the original monoclinic phase. The understanding of the compression mechanism of SbPO4 can aid to improve the ion intercalation and catalytic properties of this layered compound.

12.
Inorg Chem ; 59(14): 9900-9918, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32640163

RESUMO

High pressure X-ray diffraction, Raman scattering, and electrical measurements, together with theoretical calculations, which include the analysis of the topological electron density and electronic localization function, evidence the presence of an isostructural phase transition around 2 GPa, a Fermi resonance around 3.5 GPa, and a pressure-induced decomposition of SnSb2Te4 into the high-pressure phases of its parent binary compounds (α-Sb2Te3 and SnTe) above 7 GPa. The internal polyhedral compressibility, the behavior of the Raman-active modes, the electrical behavior, and the nature of its different bonds under compression have been discussed and compared with their parent binary compounds and with related ternary materials. In this context, the Raman spectrum of SnSb2Te4 exhibits vibrational modes that are associated but forbidden in rocksalt-type SnTe; thus showing a novel way to experimentally observe the forbidden vibrational modes of some compounds. Here, some of the bonds are identified with metavalent bonding, which were already observed in their parent binary compounds. The behavior of SnSb2Te4 is framed within the extended orbital radii map of BA2Te4 compounds, so our results pave the way to understand the pressure behavior and stability ranges of other "natural van der Waals" compounds with similar stoichiometry.

13.
Inorg Chem ; 58(9): 5966-5979, 2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-30986038

RESUMO

We have investigated the high-pressure behavior of PbCrO4. In particular, we have probed the existence of structural transitions under high pressure (at 4.5 GPa) by single-crystal X-ray diffraction and density functional theory calculations. The structural sequence of PbCrO4 is different than previously determined. Specifically, we have established that PbCrO4, under pressure, displays a monoclinic-tetragonal phase transition, with no intermediate phases between the low-pressure monoclinic monazite structure (space group P21/ n) and the high-pressure tetragonal structure. The crystal structure of the high-pressure polymorph is, for the first time, undoubtedly determined to a tetragonal scheelite-type structure (space group I41/ a) with unit-cell parameters a = 5.1102(3) Å and c = 12.213(3) Å. These findings have been used for a reinterpretation of previously published Raman and optical-absorption results. Information of calculated infrared-active phonons will be also provided. In addition, the pressure dependence of the unit-cell parameters, atomic positions, bond distances, and polyhedral coordination are discussed. The softest and stiffest direction of compression for monazite-type PbCrO4 are also reported. Finally, the theoretical pressure dependence of infrared-active modes is given, for the first time, for both polymorphs.

14.
Inorg Chem ; 58(16): 10665-10670, 2019 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-31389700

RESUMO

The effects of pressure on the crystal structure of aurophilic tetragonal gold iodide have been studied by means of powder X-ray diffraction up to 13.5 GPa. We found evidence of the onset of a phase transition at 1.5 GPa that is more significant from 3.8 GPa. The low- and high-pressure phases coexist up to 10.7 GPa. Beyond 10.7 GPa, an irreversible process of amorphization takes place. We determined the axial and bulk compressibility of the ambient-pressure tetragonal phase of gold iodide up to 3.3 GPa. This is extremely compressible with a bulk modulus of 18.1(8) GPa, being as soft as a rare gas, molecular solids, or organometallic compounds. Moreover, its response to pressure is anisotropic.

15.
Inorg Chem ; 58(7): 4480-4490, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30864787

RESUMO

We present a study of the pressure dependence of the structure of partially hydrated hexagonal CePO4 up to 21 GPa using synchrotron powder X-ray diffraction. At a pressure of 10 GPa, a second-order structural phase transition is observed, associated with a novel polymorph. The previously unknown high-pressure phase has a monoclinic structure with a similar atomic arrangement as the low-pressure phase, but with reduced symmetry, belonging to space group C2. Group-subgroup relations hold for the space symmetry groups of both structures. There is no detectable volume discontinuity at the phase transition. Here we provide structural information on the new phase and determine the axial compressibility and bulk modulus for both phases. They are found to have an anisotropic behavior and to be much more compressible than the denser monazite-like polymorph of CePO4. In addition, the isothermal compressibility tensor for the high-pressure structure is reported at 10 GPa and the direction of maximum compressibility described. Finally, the possible role of water and the pressure medium in the high-pressure behavior is discussed. The results are compared with those from other rare-earth orthophosphates.

16.
Inorg Chem ; 57(14): 8241-8252, 2018 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-29944355

RESUMO

α(R)-In2Se3 has been experimentally and theoretically studied under compression at room temperature by means of X-ray diffraction and Raman scattering measurements as well as by ab initio total-energy and lattice-dynamics calculations. Our study has confirmed the α ( R3 m) → ß' ( C2/ m) → ß ( R3̅ m) sequence of pressure-induced phase transitions and has allowed us to understand the mechanism of the monoclinic C2/ m to rhombohedral R3̅ m phase transition. The monoclinic C2/ m phase enhances its symmetry gradually until a complete transformation to the rhombohedral R3̅ m structure is attained above 10-12 GPa. The second-order character of this transition is the reason for the discordance in previous measurements. The comparison of Raman measurements and lattice-dynamics calculations has allowed us to tentatively assign most of the Raman-active modes of the three phases. The comparison of experimental results and simulations has helped to distinguish between the different phases of In2Se3 and resolve current controversies.

17.
Inorg Chem ; 57(13): 7550-7557, 2018 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-29927586

RESUMO

We studied the electronic and vibrational properties of monazite-type SrCrO4 under compression. The study extended the pressure range of previous studies from 26 to 58 GPa. The existence of two previously reported phase transitions was confirmed at 9 and 14 GPa, and two new phase transitions were found at 35 and 48 GPa. These transitions involve several changes in the vibrational and transport properties with the new high-pressure phases having a conductivity lower than that of the previously known phases. No evidence of chemical decomposition or metallization of SrCrO4 was detected. A tentative explanation for the reported observations is discussed.

18.
Inorg Chem ; 57(16): 10265-10276, 2018 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-30052035

RESUMO

In this work, we present an experimental and theoretical study of the effects of high pressure and high temperature on the structural properties of olivine-type LiNiPO4. This compound is part of an interesting class of materials primarily studied for their potential use as electrodes in lithium-ion batteries. We found that the original olivine structure (α-phase) is stable up to ∼40 GPa. Above this pressure, the onset of a new phase is observed, as put in evidence by the X-ray diffraction (XRD) experiments. The structural refinement shows that the new phase (known as ß-phase) belongs to space group Cmcm. At room temperature, the two phases coexist at least up to 50 GPa. A complete conversion to the ß-phase was only obtained at high-pressure and high-temperature conditions (973 K, 6.5 GPa), as confirmed by both XRD and Raman spectroscopy. Ab initio calculations support the same structural sequence. The need of high-temperature conditions to obtain the complete transformation of the α-phase into the ß-phase is indicative of the existence of a kinetic barrier for the phase transition. Here, we report the evolution of crystallographic parameters as a function of pressure for both phases, comparing them with the theoretical predictions. We also discuss the influence of pressure on the polyhedral units and report room-temperature equations of state. The dependence of the Raman phonons of both phases on pressure is also studied, assigning to each phonon its respective symmetry by comparison with the results of the ab initio simulations.

19.
Inorg Chem ; 57(13): 7860-7876, 2018 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-29897237

RESUMO

The high-pressure behavior of the crystalline structure FeVO4 has been studied by means of X-ray diffraction using a diamond-anvil cell and first-principles calculations. The experiments were carried out up to a pressure of 12.3 GPa, until now the highest pressure reached to study an FeVO4 compound. High-pressure X-ray diffraction measurements show that the triclinic P1̅ (FeVO4-I) phase remains stable up to ≈3 GPa; then a first-order phase transition to a new monoclinic polymorph of FeVO4 (FeVO4-II') with space group C2/ m is observed, having an α-MnMoO4-type structure. A second first-order phase transition is observed around 5 GPa toward the monoclinic ( P2/ c) wolframite-type FeVO4-IV structure, which is stable up to 12.3 GPa in coexistence with FeVO4-II'. The unit cell volume reductions for the first and second phase transitions are Δ V = -8.5% and -13.1%. It was observed that phase transitions are irreversible and both high-pressure phases remain stable once the pressure is released. Calculations were performed at the level of the generalized gradient approximation plus Hubbard correction (GGA+ U) and with the hybrid Heyd-Scuseria-Ernzerhof (HSE06) exchange-correlation functional in order to have a good representation of the pressure behavior of FeVO4. We found that theoretical results follow the pressure evolution of structural parameters of FeVO4, in good agreement with the experimental results. Also, we analyze FeVO4-II (orthorhombic Cmcm, CrVO4-type structure) and -III (orthorhombic Pbcn, α-PbO2-type structure) phases and compare our results with the literature. Going beyond the experimental results, we study some possible post-wolframite phases reported for other compounds and we found a phase transition for FeVO4-IV to raspite (monoclinic P21/ c) type structure (FeVO4-V) at 36 GPa (Δ V = -8.1%) and a further phase transition to the AgMnO4-type (monoclinic P21/ c) structure (FeVO4-VI) at 66.5 GPa (Δ V = -3.7%), similar to the phase transition sequence reported for InVO4.

20.
Inorg Chem ; 57(21): 14005-14012, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30370764

RESUMO

The zircon to scheelite phase boundary of ErVO4 has been studied by high-pressure and high-temperature powder and single-crystal X-ray diffraction. This study has allowed us to delimit the best synthesis conditions of its scheelite-type phase, determine the ambient-temperature equation of state of the zircon and scheelite-type structures, and obtain the thermal equation of state of the zircon-type polymorph. The results obtained with powder samples indicate that zircon-type ErVO4 transforms to scheelite at 8.2 GPa and 293 K and at 7.5 GPa and 693 K. The analyses yield bulk moduli K0 of 158(13) GPa for the zircon phase and 158(17) GPa for the scheelite phase, with a temperature derivative of d K0/d T = -[3.8(2)] × 10-3 GPa K-1 and a volumetric thermal expansion of α0 = [0.9(2)] × 10-5 K-1 for the zircon phase according to the Berman model. The results are compared with those of other zircon-type vanadates, raising the need for careful experiments with highly crystalline scheelite to obtain reliable bulk moduli of this phase. Finally, we have performed single-crystal diffraction experiments from 110 to 395 K, and the obtained volumetric thermal expansion (α0) for zircon-type ErVO4 in the 300-395 K range is [1.4(2)] × 10-5 K-1, in good agreement with previous data and with our experimental value given from the thermal equation of state fit within the limits of uncertainty.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA