Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Eur J Haematol ; 111(5): 729-741, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37501402

RESUMO

BACKGROUND: Splicing modifications, genomic instability, and hypomethylation are central mechanisms promoting myelodysplasia and acute myeloid leukemia (AML). In this real-life retrospective study, to elucidate pathophysiology of clonal hemopoiesis in hematological malignancies, we investigated clinical significance of mutations in leukemia-related genes of known pathogenetic significance and of variants of uncertain clinical significance (VUS) in a cohort of patients with MDS and AML. METHODS: A total of 59 consecutive subjects diagnosed with MDS, 48 with AML, and 17 with clonal cytopenia with unknown significance were screened for somatic mutations in AML-related genes by next-generation sequencing. RESULTS: We showed that TET2, SETBP1, ASXL1, EZH2, RUNX1, SRSF2, DNMT3A, and IDH1/2 were commonly mutated. MDS patients also showed a high genetic complexity, especially for SETBP1. Moreover, the presence of SETBP1 wild-type or two or more simultaneous VUS variants identified a subgroup of AML and MDS patients with better outcome, while the presence of single SETBP1 VUS variant was related to a worse prognosis, regardless TET2 mutational status. CONCLUSIONS: In conclusions, we linked both pathogenic and VUS variants in AML-related genes to clonal hematopoiesis; therefore, we proposed to consider those variants as prognostic markers in leukemia and myelodysplasia. However, further studies in larger prospective cohorts are required to validate our results.


Assuntos
Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Humanos , Estudos Retrospectivos , Estudos Prospectivos , Relevância Clínica , Mutação , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/genética , Suscetibilidade a Doenças , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Prognóstico
2.
Blood ; 135(8): 534-541, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-31877211

RESUMO

In chronic myeloid leukemia (CML) patients, tyrosine kinase inhibitors (TKIs) may select for drug-resistant BCR-ABL1 kinase domain (KD) mutants. Although Sanger sequencing (SS) is considered the gold standard for BCR-ABL1 KD mutation screening, next-generation sequencing (NGS) has recently been assessed in retrospective studies. We conducted a prospective, multicenter study (NEXT-in-CML) to assess the frequency and clinical relevance of low-level mutations and the feasibility, cost, and turnaround times of NGS-based BCR-ABL1 mutation screening in a routine setting. A series of 236 consecutive CML patients with failure (n = 124) or warning (n = 112) response to TKI therapy were analyzed in parallel by SS and NGS in 1 of 4 reference laboratories. Fifty-one patients (22 failure, 29 warning) who were negative for mutations by SS had low-level mutations detectable by NGS. Moreover, 29 (27 failure, 2 warning) of 60 patients who were positive for mutations by SS showed additional low-level mutations. Thus, mutations undetectable by SS were identified in 80 out of 236 patients (34%), of whom 42 (18% of the total) had low-level mutations somehow relevant for clinical decision making. Prospective monitoring of mutation kinetics demonstrated that TKI-resistant low-level mutations are invariably selected if the patients are not switched to another TKI or if they are switched to a inappropriate TKI or TKI dose. The NEXT-in-CML study provides for the first time robust demonstration of the clinical relevance of low-level mutations, supporting the incorporation of NGS-based BCR-ABL1 KD mutation screening results in the clinical decision algorithms.


Assuntos
Proteínas de Fusão bcr-abl/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Inibidores de Proteínas Quinases/uso terapêutico , Adulto , Idoso , Idoso de 80 Anos ou mais , Resistencia a Medicamentos Antineoplásicos , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Taxa de Mutação , Estudos Prospectivos
3.
Cell Biochem Funct ; 40(7): 706-717, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35981137

RESUMO

The chromosomal translocation t(4;11)(q21;q23), a hallmark of an aggressive form of acute lymphoblastic leukemia (ALL), encodes mixed-lineage leukemia (MLL)-AF4 oncogenic chimera that triggers aberrant transcription of genes involved in lymphocyte differentiation, including HOXA9 and MEIS1. The scaffold protein 14-3-3θ, which promotes the binding of MLL-AF4 to the HOXA9 promoter, is a target of MiR-27a, a tumor suppressor in different human leukemia cell types. We herein study the role of MiR-27a in the pathogenesis of t(4;11) ALL. Reverse transcription quantitative PCR (qPCR) reveals that MiR-27a and 14-3-3θ expression is inversely correlated in t(4;11) ALL cell lines; interestingly, MiR-27a relative expression is significantly lower in patients affected by t(4;11) ALL than in patients affected by the less severe t(12;21) leukemia. In t(4;11) leukemia cells, ectopic expression of MiR-27a decreases protein level of 14-3-3θ and of the key transcription factor RUNX1. We show for the first time that MiR-27a also targets AF4 and MLL-AF4; in agreement, MiR-27a overexpression strongly reduces AF4 and MLL-AF4 protein levels in RS4;11 cells. Consequent to AF4 and MLL-AF4 downregulation, MiR-27a overexpression negatively affects transcription of HOXA9 and MEIS1 in different t(4;11) leukemia cell lines. In agreement, we show through chromatin immunoprecipitation experiments that MiR-27a overexpression impairs the binding of MLL-AF4 to the HOXA9 promoter. Lastly, we found that MiR-27a overexpression decreases viability, proliferation, and clonogenicity of t(4;11) cells, whereas it enhances their apoptotic rate. Overall, our study identifies the first microRNAthat strikes in one hit four crucial drivers of blast transformation in t(4;11) leukemia. Therefore, MiR-27a emerges as a new promising therapeutic target for this aggressive and poorly curable form of leukemia.


Assuntos
MicroRNAs , Leucemia-Linfoma Linfoblástico de Células Precursoras , Subunidade alfa 2 de Fator de Ligação ao Core , Humanos , Ativação Linfocitária , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia
4.
Int J Mol Sci ; 20(24)2019 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-31817063

RESUMO

Molecular detection of the BCR-ABL1 fusion transcripts is necessary for the genetic confirmation of a chronic myeloid leukemia diagnosis and for the risk classification of acute lymphoblastic leukemia. BCR-ABL1 mRNAs are usually identified using a conventional RT-PCR technique according to the BIOMED-1 method. In this study, we evaluated 122 BCR-ABL1-positive samples with the Q-LAMP assay to establish if this technology may represent a valid alternative to the qualitative BIOMED-1 PCR technique usually employed for the detection and the discrimination of the common BCR-ABL1 transcripts (p190 and p210 isoforms). We found a 100% concordance rate between the two methods. Specifically, the p190- and p210-positive samples were amplified by Q-LAMP with a median threshold time (Tt) of 26.70 min (range: 24.45-31.80 min) and 20.26 min (range: 15.25-34.57 min), respectively. A median time of 19.63 was observed in samples displaying both (e13a2/e14a2) p210 isoforms. Moreover, the Q-LAMP assay allowed recognition of the BCR-ABL1 e13a2 and e14a2 isoforms (median Tts 18.48 for e13a2 vs. 26.08 min for e14a2; p < 0.001). Finally, 20 samples harboring rare BCR-ABL1 isoforms (e1a3, e13a3, e14a3, and e19a2) were correctly identified by the Q-LAMP assay. We conclude that the Q-LAMP assay may represent a faster and valid alternative to the qualitative BIOMED-1 RT-PCR for the diagnosis at BCR-ABL1-positive leukemias, especially when samples are analyzed in centers with restricted resources and/or limited technical expertise.


Assuntos
Proteínas de Fusão bcr-abl/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Área Sob a Curva , Proteínas de Fusão bcr-abl/metabolismo , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Cromossomo Filadélfia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Curva ROC
5.
Blood ; 117(12): 3353-62, 2011 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-21278353

RESUMO

The cancer testis antigen (CTA) preferentially expressed antigen of melanoma (PRAME) is overexpressed by many hematologic malignancies, but is absent on normal tissues, including hematopoietic progenitor cells, and may therefore be an appropriate candidate for T cell-mediated immunotherapy. Because it is likely that an effective antitumor response will require high-avidity, PRAME-specific cytotoxic T lymphocytes (CTLs), we attempted to generate such CTLs using professional and artificial antigen-presenting cells loaded with a peptide library spanning the entire PRAME protein and consisting of 125 synthetic pentadecapeptides overlapping by 11 amino acids. We successfully generated polyclonal, PRAME-specific CTL lines and elicited high-avidity CTLs, with a high proportion of cells recognizing a previously uninvestigated HLA-A*02-restricted epitope, P435-9mer (NLTHVLYPV). These PRAME-CTLs could be generated both from normal donors and from subjects with PRAME(+) hematologic malignancies. The cytotoxic activity of our PRAME-specific CTLs was directed not only against leukemic blasts, but also against leukemic progenitor cells as assessed by colony-forming-inhibition assays, which have been implicated in leukemia relapse. These PRAME-directed CTLs did not affect normal hematopoietic progenitors, indicating that this approach may be of value for immunotherapy of PRAME(+) hematologic malignancies.


Assuntos
Antígenos de Neoplasias/imunologia , Leucemia/imunologia , Células-Tronco Neoplásicas/imunologia , Especificidade do Receptor de Antígeno de Linfócitos T , Linfócitos T Citotóxicos/metabolismo , Sequência de Aminoácidos , Antígenos de Neoplasias/química , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Doadores de Sangue , Linhagem Celular Tumoral , Citotoxicidade Imunológica/imunologia , Epitopos de Linfócito T/química , Epitopos de Linfócito T/imunologia , Epitopos de Linfócito T/metabolismo , Antígenos HLA-A/metabolismo , Antígeno HLA-A2 , Humanos , Células K562 , Leucemia/genética , Leucemia/patologia , Células-Tronco Neoplásicas/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/imunologia , Especificidade do Receptor de Antígeno de Linfócitos T/imunologia , Especificidade do Receptor de Antígeno de Linfócitos T/fisiologia , Linfócitos T Citotóxicos/imunologia
6.
Cancers (Basel) ; 13(21)2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34771634

RESUMO

BCR-ABL1 mRNA levels represent the key molecular marker for the evaluation of minimal residual disease (MRD) in chronic myeloid leukemia (CML) patients and real-time quantitative PCR (RT-qPCR) is currently the standard method to monitor it. In the era of tyrosine kinase inhibitors (TKIs) discontinuation, droplet digital PCR (ddPCR) has emerged to provide a more precise detection of MRD. To hypothesize the use of ddPCR in clinical practice, we designed a multicentric study to evaluate the potential value of ddPCR in the diagnostic routine. Thirty-seven RNA samples from CML patients and five from healthy donors were analyzed using both ddPCR QXDxTMBCR-ABL %IS Kit and LabNet-approved RT-qPCR methodologies in three different Italian laboratories. Our results show that ddPCR has a good agreement with RT-qPCR, but it is more precise to quantify BCR-ABL1 transcript levels. Furthermore, we did not find differences between duplicate or quadruplicate analysis in terms of BCR-ABL1% IS values. Droplet digital PCR could be confidently introduced into the diagnostic routine as a complement to the RT-qPCR.

7.
Front Oncol ; 9: 833, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31555590

RESUMO

More than 15 years ago, imatinib entered into the clinical practice as a "magic bullet"; from that point on, the prognosis of patients affected by chronic myeloid leukemia (CML) became comparable to that of aged-matched healthy subjects. The aims of treatment with tyrosine kinase inhibitors (TKIs) are for complete hematological response after 3 months of treatment, complete cytogenetic response after 6 months, and a reduction of the molecular disease of at least 3 logs after 12 months. Patients who do not reach their goal can switch to another TKI. Thus, the molecular monitoring of response is the main consideration of management of CML patients. Moreover, cases in deep and persistent molecular response can tempt the physician to interrupt treatment, and this "dream" is possible due to the quantitative PCR. After great international effort, today the BCR-ABL1 expression obtained in each laboratory is standardized and expressed as "international scale." This aim has been reached after the establishment of the EUTOS program (in Europe) and the LabNet network (in Italy), the platforms where biologists meet clinicians. In the field of quantitative PCR, the digital PCR is now a new and promising, sensitive and accurate tool. Some authors reported that digital PCR is able to better classify patients in precise "molecular classes," which could lead to a better identification of those cases that will benefit from the interruption of therapy. In addition, digital PCR can be used to identify a point mutation in the ABL1 domain, mutations that are often responsible for the TKI resistance. In the field of resistance, a prominent role is played by the NGS that enables identification of any mutation in ABL1 domain, even at sub-clonal levels. This manuscript reviews how the molecular tools can lead the management of CML patients, focusing on the more recent technical advances.

8.
Oncotarget ; 6(29): 28223-37, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26320177

RESUMO

The Kruppel-like protein ZNF224 is a co-factor of the Wilms' tumor 1 protein, WT1. We have previously shown that ZNF224 exerts a specific proapoptotic role in chronic myelogenous leukemia (CML) K562 cells and contributes to cytosine arabinoside-induced apoptosis, by modulating WT1-dependent transcription of apoptotic genes. Here we demonstrate that ZNF224 gene expression is down-regulated both in BCR-ABL positive cell lines and in primary CML samples and is restored after imatinib and second generation tyrosine kinase inhibitors treatment. We also show that WT1, whose expression is positively regulated by BCR-ABL, represses transcription of the ZNF224 gene. Finally, we report that ZNF224 is significantly down-regulated in patients with BCR-ABL positive chronic phase-CML showing poor response or resistance to imatinib treatment as compared to high-responder patients. Taken as a whole, our data disclose a novel pathway activated by BCR-ABL that leads to inhibition of apoptosis through the ZNF224 repression. ZNF224 could thus represent a novel promising therapeutic target in CML.


Assuntos
Apoptose/genética , Proteínas de Fusão bcr-abl/genética , Regulação Neoplásica da Expressão Gênica/genética , Proteínas Repressoras/genética , Proteínas WT1/genética , Western Blotting , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Fusão bcr-abl/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Mesilato de Imatinib/farmacologia , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Regiões Promotoras Genéticas/genética , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Interferência de RNA , Proteínas Repressoras/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas WT1/metabolismo
9.
Leuk Res ; 38(2): 236-42, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24280282

RESUMO

The IC50 of TKIs is significantly increased when BCR-ABL+ K562 cell line is cultured in stroma conditioned media produced by BM mesenchymal cells. In particular, while the Imatinib IC50 in the stromal co-cultures was well above the in vivo through levels of the drug, the IC50s of second generation TKIs were still below their through levels. Moreover, we provide a formal comparison of the synergy between first and second generation TKIs with the JAK inhibitor Ruxolitinib to overcome BM stroma related TKI resistance. Taken together, our data provide a rationale for the therapeutic combination of TKIs and Ruxolitinib with the aim to eradicate primary BCR-ABL+ cells homed in BM niches.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Medula Óssea/fisiologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Inibidores de Proteínas Quinases/farmacologia , Pirazóis/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Medula Óssea/patologia , Avaliação Pré-Clínica de Medicamentos , Sinergismo Farmacológico , Humanos , Concentração Inibidora 50 , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Nitrilas , Pirimidinas , Células Estromais/patologia , Células Estromais/fisiologia , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA