Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Magn Reson Med ; 91(2): 513-529, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37705412

RESUMO

PURPOSE: To increase the RF coil performance and RF management for body imaging at 10.5 T by validating and evaluating a high-density 16-channel transceiver array, implementing virtual observation points (VOPs), and demonstrating specific absorption rate (SAR) constrained imaging in vivo. METHODS: The inaccuracy of the electromagnetic model of the array was quantified based on B1 + and SAR data. Inter-subject variability was estimated using a new approach based on the relative SAR deviation of different RF shims between human body models. The pTx performance of the 16-channel array was assessed in simulation by comparison to a previously demonstrated 10-channel array. In vivo imaging of the prostate was performed demonstrating SAR-constrained static RF shimming and acquisition modes optimized for refocused echoes (AMORE). RESULTS: The model inaccuracy of 29% and the inter-subject variability of 85% resulted in a total safety factor of 1.91 for pelvis studies. For renal and cardiac imaging, inter-subject variabilities of 121% and 141% lead to total safety factors of 2.25 and 2.45, respectively. The shorter wavelength at 10.5 T supported the increased element density of the 16-channel array which in turn outperformed the 10-channel version for all investigated metrics. Peak 10 g local SAR reduction of more than 25% without a loss of image quality was achieved in vivo, allowing a theoretical improvement in measurement efficiency of up to 66%. CONCLUSIONS: By validating and characterizing a 16-channel dipole transceiver array, this work demonstrates, for the first time, a VOP-enabled RF coil for human torso imaging enabling increased pTx performance at 10.5 T.


Assuntos
Imageamento por Ressonância Magnética , Próstata , Masculino , Humanos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Desenho de Equipamento , Simulação por Computador , Ondas de Rádio
2.
Magn Reson Med ; 92(3): 1219-1231, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38649922

RESUMO

PURPOSE: We examined magnetic field dependent SNR gains and ability to capture them with multichannel receive arrays for human head imaging in going from 7 T, the most commonly used ultrahigh magnetic field (UHF) platform at the present, to 10.5 T, which represents the emerging new frontier of >10 T in UHFs. METHODS: Electromagnetic (EM) models of 31-channel and 63-channel multichannel arrays built for 10.5 T were developed for 10.5 T and 7 T simulations. A 7 T version of the 63-channel array with an identical coil layout was also built. Array performance was evaluated in the EM model using a phantom mimicking the size and electrical properties of the human head and a digital human head model. Experimental data was obtained at 7 T and 10.5 T with the 63-channel array. Ultimate intrinsic SNR (uiSNR) was calculated for the two field strengths using a voxelized cloud of dipoles enclosing the phantom or the digital human head model as a reference to assess the performance of the two arrays and field depended SNR gains. RESULTS: uiSNR calculations in both the phantom and the digital human head model demonstrated SNR gains at 10.5 T relative to 7 T of 2.6 centrally, ˜2 at the location corresponding to the edge of the brain, ˜1.4 at the periphery. The EM models demonstrated that, centrally, both arrays captured ˜90% of the uiSNR at 7 T, but only ˜65% at 10.5 T, leading only to ˜2-fold gain in array SNR in going from 7 to 10.5 T. This trend was also observed experimentally with the 63-channel array capturing a larger fraction of the uiSNR at 7 T compared to 10.5 T, although the percentage of uiSNR captured were slightly lower at both field strengths compared to EM simulation results. CONCLUSIONS: Major uiSNR gains are predicted for human head imaging in going from 7 T to 10.5 T, ranging from ˜2-fold at locations corresponding to the edge of the brain to 2.6-fold at the center, corresponding to approximately quadratic increase with the magnetic field. Realistic 31- and 63-channel receive arrays, however, approach the central uiSNR at 7 T, but fail to do so at 10.5 T, suggesting that more coils and/or different type of coils will be needed at 10.5 T and higher magnetic fields.


Assuntos
Cabeça , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Razão Sinal-Ruído , Humanos , Cabeça/diagnóstico por imagem , Imageamento por Ressonância Magnética/instrumentação , Encéfalo/diagnóstico por imagem , Desenho de Equipamento , Simulação por Computador , Processamento de Imagem Assistida por Computador/métodos
3.
Magn Reson Med ; 90(6): 2627-2642, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37533196

RESUMO

PURPOSE: The purpose of this study is to present a strategy to calculate the implant-friendly (IF) excitation modes-which mitigate the RF heating at the contacts of deep brain stimulation (DBS) electrodes-of multichannel RF coils at 7 T. METHODS: An induced RF current on an implantable electrode generates a scattered magnetic field whose left-handed circularly polarizing component ( B 1 + $$ B{1}^{+} $$ ) is approximated using a B 1 + $$ B{1}^{+} $$ -mapping technique and subsequently used as a gauge for the electrode's induced current. Using this approach, the relative induced currents resulting from each channel of a multichannel RF coil on the DBS electrode were calculated. The IF modes of the corresponding multichannel coil were determined by calculating the null space of the relative induced currents. The proposed strategy was tested and validated for unilateral and bilateral commercial DBS electrodes (directional lead; Infinity DBS system, Abbott Laboratories) placed inside a uniform phantom by performing heating and imaging studies on a 7T MRI scanner using a 16-channel transceive RF coil. RESULTS: Neither individual IF modes nor shim solutions obtained from IF modes induced significant temperature increase when used for a high-power turbo spin-echo sequence. In contrast, shimming with the scanner's toolbox (i.e., based on per-channel B 1 + $$ B{1}^{+} $$ fields) resulted in a more than 2°C temperature increase for the same amount of input power. CONCLUSION: A strategy for calculating the IF modes of a multichannel RF coil is presented. This strategy was validated using a 16-channel RF coil at 7 T for unilateral and bilateral commercial DBS electrodes inside a uniform phantom.


Assuntos
Estimulação Encefálica Profunda , Estimulação Encefálica Profunda/métodos , Imageamento por Ressonância Magnética/métodos , Eletrodos Implantados , Imagens de Fantasmas , Ondas de Rádio
4.
NMR Biomed ; 36(5): e4874, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36368912

RESUMO

The purpose of this work is to propose a tier-based formalism for safety assessment of custom-built radio-frequency (RF) coils that balances validation effort with the effort put in determinating the safety factor. The formalism has three tier levels. Higher tiers require increased effort when validating electromagnetic simulation results but allow for less conservative safety factors. In addition, we propose a new method to calculate modeling uncertainty between simulations and measurements and a new method to propagate uncertainties in the simulation into a safety factor that minimizes the risk of underestimating the peak specific absorption rate (SAR). The new safety assessment procedure was completed for all tier levels for an eight-channel dipole array for prostate imaging at 7 T and an eight-channel dipole array for head imaging at 10.5 T, using data from two different research sites. For the 7 T body array, the validation procedure resulted in a modeling uncertainty of 77% between measured and simulated local SAR distributions. For a situation where RF shimming is performed on the prostate, average power limits of 2.4 and 4.5 W/channel were found for tiers 2 and 3, respectively. When the worst-case peak SAR among all phase settings was calculated, power limits of 1.4 and 2.7 W/channel were found for tiers 2 and 3, respectively. For the 10.5 T head array, a modeling uncertainty of 21% was found based on B1 + mapping. For the tier 2 validation, a power limit of 2.6 W/channel was calculated. The demonstrated tier system provides a strategy for evaluating modeling inaccuracy, allowing for the rapid translation of novel coil designs with conservative safety factors and the implementation of less conservative safety factors for frequently used coil arrays at the expense of increased validation effort.


Assuntos
Imageamento por Ressonância Magnética , Ondas de Rádio , Masculino , Humanos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Simulação por Computador , Próstata/diagnóstico por imagem
5.
AJR Am J Roentgenol ; 221(6): 788-804, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37377363

RESUMO

The first commercially available 7-T MRI scanner (Magnetom Terra) was approved by the FDA in 2017 for clinical imaging of the brain and knee. After initial protocol development and sequence optimization efforts in volunteers, the 7-T system, in combination with an FDA-approved 1-channel transmit/32-channel receive array head coil, can now be routinely used for clinical brain MRI examinations. The ultrahigh field strength of 7-T MRI has the advantages of improved spatial resolution, increased SNR, and increased CNR but also introduces an array of new technical challenges. The purpose of this article is to describe an institutional experience with the use of the commercially available 7-T MRI scanner for routine clinical brain imaging. Specific clinical indications for which 7-T MRI may be useful for brain imaging include brain tumor evaluation with possible perfusion imaging and/or spectroscopy, radiotherapy planning; evaluation of multiple sclerosis and other demyelinating diseases, evaluation of Parkinson disease and guidance of deep brain stimulator placement, high-detail intracranial MRA and vessel wall imaging, evaluation of pituitary pathology, and evaluation of epilepsy. Detailed protocols, including sequence parameters, for these various indications are presented, and implementation challenges (including artifacts, safety, and side effects) and potential solutions are explored.


Assuntos
Neoplasias Encefálicas , Epilepsia , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Neuroimagem/métodos , Neoplasias Encefálicas/diagnóstico por imagem
6.
Magn Reson Med ; 88(5): 2311-2325, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35781696

RESUMO

PURPOSE: The purpose of this study is to present a workflow for predicting the radiofrequency (RF) heating around the contacts of a deep brain stimulation (DBS) lead during an MRI scan. METHODS: The induced RF current on the DBS lead accumulates electric charge on the metallic contacts, which may cause a high local specific absorption rate (SAR), and therefore, heating. The accumulated charge was modeled by imposing a voltage boundary condition on the contacts in a quasi-static electromagnetic (EM) simulation allowing thermal simulations to be performed with the resulting SAR distributions. Estimating SAR and temperature increases from a lead in vivo through EM simulation is not practical given anatomic differences and variations in lead geometry. To overcome this limitation, a new parameter, transimpedance, was defined to characterize a given lead. By combining the transimpedance, which can be measured in a single calibration scan, along with MR-based current measurements of the lead in a unique orientation and anatomy, local heating can be estimated. Heating determined with this approach was compared with results from heating studies of a commercial DBS electrode in a gel phantom with different lead configurations to validate the proposed method. RESULTS: Using data from a single calibration experiment, the transimpedance of a commercial DBS electrode (directional lead, Infinity DBS system, Abbott Laboratories, Chicago, IL) was determined to be 88 Ω. Heating predictions using the DBS transimpedance and rapidly acquired MR-based current measurements in 26 different lead configurations resulted in a <23% (on average 11.3%) normalized root-mean-square error compared to experimental heating measurements during RF scans. CONCLUSION: In this study, a workflow consisting of an MR-based current measurement on the DBS lead and simple quasi-static EM/thermal simulations to predict the temperature increase around a DBS electrode undergoing an MRI scan is proposed and validated using a commercial DBS electrode.


Assuntos
Estimulação Encefálica Profunda , Estimulação Encefálica Profunda/métodos , Eletrodos , Eletrodos Implantados , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas , Ondas de Rádio , Temperatura , Fluxo de Trabalho
7.
Magn Reson Med ; 87(4): 2074-2088, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34825735

RESUMO

PURPOSE: The purpose of this study is to introduce a new antenna element with improved transmit performance, named the nonuniform dielectric substrate (NODES) antenna, for building transmit arrays at ultrahigh-field. METHODS: We optimized a dipole antenna at 10.5 Tesla by maximizing the B1+ -SAR efficiency in a phantom for a human spine target. The optimization parameters included permittivity variation in the substrate, substrate thickness, antenna length, and conductor geometry. We conducted electromagnetic simulations as well as phantom experiments to compare the transmit/receive performance of the proposed NODES antenna design with existing coil elements from the literature. RESULTS: Single NODES element showed up to 18% and 30% higher B1+ -SAR efficiency than the fractionated dipole and loop elements, respectively. The new element is substantially shorter than a commonly used dipole, which enables z-stacked array formation; it is additionally capable of providing a relatively uniform current distribution along its conductors. The nine-channel transmit/receive NODES array achieved 7.5% higher B1+ homogeneity than a loop array with the same number of elements. Excitation with the NODES array resulted in 33% lower peak 10g-averaged SAR and required 34% lower input power than the loop array for the target anatomy of the spine. CONCLUSION: In this study, we introduced a new RF coil element: the NODES antenna. NODES antenna outperformed the widely used loop and dipole elements and may provide improved transmit/receive performance for future ultrahigh field MRI applications.


Assuntos
Imageamento por Ressonância Magnética , Ondas de Rádio , Desenho de Equipamento , Humanos , Imagens de Fantasmas , Coluna Vertebral/diagnóstico por imagem
8.
Sensors (Basel) ; 21(18)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34577210

RESUMO

For human head magnetic resonance imaging at 10.5 tesla (T), we built an 8-channel transceiver dipole antenna array and evaluated the influence of coaxial feed cables. The influence of coaxial feed cables was evaluated in simulation and compared against a physically constructed array in terms of transmit magnetic field (B1+) and specific absorption rate (SAR) efficiency. A substantial drop (23.1% in simulation and 20.7% in experiment) in B1+ efficiency was observed with a tight coaxial feed cable setup. For the investigation of the feed location, the center-fed dipole antenna array was compared to two 8-channel end-fed arrays: monopole and sleeve antenna arrays. The simulation results with a phantom indicate that these arrays achieved ~24% higher SAR efficiency compared to the dipole antenna array. For a human head model, we observed 30.8% lower SAR efficiency with the 8-channel monopole antenna array compared to the phantom. Importantly, our simulation with the human model indicates that the sleeve antenna arrays can achieve 23.8% and 21% higher SAR efficiency compared to the dipole and monopole antenna arrays, respectively. Finally, we obtained high-resolution human cadaver images at 10.5 T with the 8-channel sleeve antenna array.


Assuntos
Cabeça , Imageamento por Ressonância Magnética , Simulação por Computador , Desenho de Equipamento , Cabeça/diagnóstico por imagem , Humanos , Imagens de Fantasmas
9.
Magn Reson Med ; 84(6): 3485-3493, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32767392

RESUMO

PURPOSE: In this study, we investigate a strategy to reduce the local specific absorption rate (SAR) while keeping B1+ constant inside the region of interest (ROI) at the ultra-high field (B0 ≥ 7T) MRI. METHODS: Locally raising the resonance structure under the discontinuity (i.e., creating a bump) increases the distance between the accumulated charges and the tissue. As a result, it reduces the electric field and local SAR generated by these charges inside the tissue. The B1+ at a point that is sufficiently far from the coil, however, is not affected by this modification. In this study, three different resonant elements (i.e., loop coil, snake antenna, and fractionated dipole [FD]) are investigated. For experimental validation, a bumped FD is further investigated at 10.5T. After the validation, the transmit performances of eight-channel arrays of each element are compared through electromagnetic (EM) simulations. RESULTS: Introducing a bump reduced the peak 10g-averaged SAR by 21, 26, 23% for the loop and snake antenna at 7T, and FD at 10.5T, respectively. In addition, eight-channel bumped FD array at 10.5T had a 27% lower peak 10g-averaged SAR in a realistic human body simulation (i.e., prostate imaging) compared to an eight-channel FD array. CONCLUSION: In this study, we investigated a simple design strategy based on adding bumps to a resonant element to reduce the local SAR while maintaining B1+ inside an ROI. As an example, we modified an FD and performed EM simulations and phantom experiments with a 10.5T scanner. Results show that the peak 10g-averaged SAR can be reduced more than 25%.


Assuntos
Imageamento por Ressonância Magnética , Ondas de Rádio , Desenho de Equipamento , Humanos , Masculino , Imagens de Fantasmas , Próstata
10.
Magn Reson Med ; 84(1): 484-496, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31751499

RESUMO

PURPOSE: The purpose of this study is to safely acquire the first human head images at 10.5T. METHODS: To ensure safety of subjects, we validated the electromagnetic simulation model of our coil. We obtained quantitative agreement between simulated and experimental B1+ and specific absorption rate (SAR). Using the validated coil model, we calculated radiofrequency power levels to safely image human subjects. We conducted all experiments and imaging sessions in a controlled radiofrequency safety lab and the whole-body 10.5T scanner in the Center for Magnetic Resonance Research. RESULTS: Quantitative agreement between the simulated and experimental results was obtained including S-parameters, B1+ maps, and SAR. We calculated peak 10 g average SAR using 4 different realistic human body models for a quadrature excitation and demonstrated that the peak 10 g SAR variation between subjects was less than 30%. We calculated safe power limits based on this set and used those limits to acquire T2 - and T2∗ -weighted images of human subjects at 10.5T. CONCLUSIONS: In this study, we acquired the first in vivo human head images at 10.5T using an 8-channel transmit/receive coil. We implemented and expanded a previously proposed workflow to validate the electromagnetic simulation model of the 8-channel transmit/receive coil. Using the validated coil model, we calculated radiofrequency power levels to safely image human subjects.


Assuntos
Imageamento por Ressonância Magnética , Ondas de Rádio , Simulação por Computador , Humanos , Imagens de Fantasmas
11.
Magn Reson Med ; 84(1): 289-303, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31846121

RESUMO

PURPOSE: To investigate the feasibility of imaging the human torso and to evaluate the performance of several radiofrequency (RF) management strategies at 10.5T. METHODS: Healthy volunteers were imaged on a 10.5T whole-body scanner in multiple target anatomies, including the prostate, hip, kidney, liver, and heart. Phase-only shimming and spoke pulses were used to demonstrate their performance in managing the B1+ inhomogeneity present at 447 MHz. Imaging protocols included both qualitative and quantitative acquisitions to show the feasibility of imaging with different contrasts. RESULTS: High-quality images were acquired and demonstrated excellent overall contrast and signal-to-noise ratio. The experimental results matched well with predictions and suggested good translational capabilities of the RF management strategies previously developed at 7T. Phase-only shimming provided increased efficiency, but showed pronounced limitations in homogeneity, demonstrating the need for the increased degrees of freedom made possible through single- and multispoke RF pulse design. CONCLUSION: The first in-vivo human imaging was successfully performed at 10.5T using previously developed RF management strategies. Further improvement in RF coils, transmit chain, and full integration of parallel transmit functionality are needed to fully realize the benefits of 10.5T.


Assuntos
Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Coração , Humanos , Masculino , Ondas de Rádio , Razão Sinal-Ruído
12.
Neuroimage ; 184: 658-668, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30273715

RESUMO

The purpose of this work is to present a new method that can be used to estimate and mitigate RF induced currents on Deep Brain Stimulation (DBS) leads. Here, we demonstrate the effect of RF induced current mitigation on both RF heating and image quality for a variety of brain MRI sequences at 3 T. We acquired pre-scan images around a DBS lead (in-situ and ex-vivo) using conventional Gradient Echo Sequence (GRE) accelerated by parallel imaging (i.e GRAPPA) and quantified the magnitude and phase of RF induced current using the relative location of the B1+ null with respect to the lead position. We estimated the RF induced current on a DBS lead implanted in a gel phantom as well as in a cadaver head study for a variety of RF excitation patterns. We also measured the increase in tip temperature using fiber-optic probes for both phantom and cadaver studies. Using the magnitude and phase information of the current induced separately by two transmit channels of the body coil, we calculated an implant friendly (IF) excitation. Using the IF excitation, we acquired T1, T2 weighted Turbo Spin Echo (TSE), T2 weighted SPACE-Dark Fluid, and Ultra Short Echo Time (UTE) sequences around the lead. Our induced current estimation demonstrated linear relationship between the magnitude of the induced current and the square root SAR at the tip of the lead as measured in phantom studies. The "IF excitation pattern" calculated after the pre-scan mitigated RF artifacts and increased the image quality around the lead. In addition, it reduced the tip temperature significantly in both phantom and cadaver studies compared to a conventional quadrature excitation while keeping equivalent overall image quality. We present a relatively fast method that can be used to calculate implant friendly excitation, reducing image artifacts as well as the temperature around the DBS electrodes. When combined with a variety of MR sequences, the proposed method can improve the image quality and patient safety in clinical imaging scenarios.


Assuntos
Estimulação Encefálica Profunda , Eletrodos Implantados , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Estimulação Encefálica Profunda/instrumentação , Eletrodos Implantados/efeitos adversos , Temperatura Alta , Humanos , Imageamento por Ressonância Magnética/efeitos adversos , Ondas de Rádio
13.
Magn Reson Med ; 79(1): 511-514, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28342176

RESUMO

PURPOSE: In this work, we investigated the relative effects of static magnetic field exposure (10.5 Tesla [T]) on two physiological parameters; blood pressure (BP) and heart rate (HR). METHODS: In vivo, we recorded both BP and HR in 4 swine (3 female, 1 male) while they were positioned within a 10.5T magnet. All measurements were performed invasively within these anesthetized animals by the placement of pressure catheters into their carotid arteries. RESULTS: We measured average increases of 2.0 mm Hg (standard deviation [SD], 6.9) in systolic BP and an increase of 4.5 mm Hg (SD, 13.7) in the diastolic BPs: We also noted an average increase of 1.2 beats per minute (SD, 2.5) in the HRs during such. CONCLUSION: Data regarding changes in BP and HR in anesthetized swine attributed to whole-body 10.5T exposure are reported. Magn Reson Med 79:511-514, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Anestesia , Pressão Sanguínea , Frequência Cardíaca , Campos Magnéticos , Animais , Determinação da Pressão Arterial , Artérias Carótidas/diagnóstico por imagem , Diástole , Feminino , Imageamento por Ressonância Magnética , Masculino , Suínos , Sístole
14.
Magn Reson Med ; 79(1): 479-488, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28370375

RESUMO

PURPOSE: To validate electromagnetic and thermal simulations with in vivo temperature measurements, and to demonstrate a framework that can be used to predict temperature increase caused by radiofrequency (RF) excitation with dipole transmitter arrays. METHODS: Dipole arrays were used to deliver RF energy in the back/neck region of the swine using different RF excitation patterns (n = 2-4 per swine) for heating. The temperature in anesthetized swine (n = 3) was measured using fluoroscopic probes (n = 12) and compared against thermal modeling from animal-specific electromagnetic simulations. RESULTS: Simulated temperature curves were in agreement with the measured data. The root mean square error between simulated and measured temperature rise at all locations (at the end of each RF excitation) is calculated as 0.37°C. The mean experimental temperature rise at the maximum temperature rise locations (averaged over all experiments) is calculated as 2.89°C. The root mean square error between simulated and measured temperature at the maximum temperature rise location is calculated as 0.57°C. (Error values are averaged over all experiments.) CONCLUSIONS: Electromagnetic and thermal simulations were validated with experiments. Thermal effects of RF excitation at 10.5 Tesla with dipoles were investigated. Magn Reson Med 79:479-488, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Desenho de Equipamento , Temperatura Alta , Hipertermia Induzida/instrumentação , Ondas de Rádio , Animais , Calibragem , Simulação por Computador , Campos Eletromagnéticos , Radiação Eletromagnética , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Modelos Anatômicos , Imagens de Fantasmas , Suínos , Tomografia Computadorizada por Raios X
15.
Magn Reson Med ; 77(1): 434-443, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27770469

RESUMO

PURPOSE: To explore the potential of performing body imaging at 10.5 Tesla (T) compared with 7.0T through evaluating the transmit/receive performance of similarly configured dipole antenna arrays. METHODS: Fractionated dipole antenna elements for 10.5T body imaging were designed and evaluated using numerical simulations. Transmit performance of antenna arrays inside the prostate, kidneys and heart were investigated and compared with those at 7.0T using both phase-only radiofrequency (RF) shimming and multi-spoke pulses. Signal-to-noise ratio (SNR) comparisons were also performed. A 10-channel antenna array was constructed to image the abdomen of a swine at 10.5T. Numerical methods were validated with phantom studies at both field strengths. RESULTS: Similar power efficiencies were observed inside target organs with phase-only shimming, but RF nonuniformity was significantly higher at 10.5T. Spokes RF pulses allowed similar transmit performance with accompanying local specific absorption rate increases of 25-90% compared with 7.0T. Relative SNR gains inside the target anatomies were calculated to be >two-fold higher at 10.5T, and 2.2-fold SNR gain was measured in a phantom. Gradient echo and fast spin echo imaging demonstrated the feasibility of body imaging at 10.5T with the designed array. CONCLUSION: While comparable power efficiencies can be achieved using dipole antenna arrays with static shimming at 10.5T; increasing RF nonuniformities underscore the need for efficient, robust, and safe parallel transmission methods. Magn Reson Med 77:434-443, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Simulação por Computador , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Imagem Corporal Total/métodos , Adulto , Animais , Desenho de Equipamento , Feminino , Humanos , Masculino , Modelos Anatômicos , Imagens de Fantasmas , Suínos
16.
Magn Reson Med ; 75(6): 2493-504, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26147916

RESUMO

PURPOSE: A new framework for the design of parallel transmit (pTx) pulses is presented introducing constraints for local and global specific absorption rate (SAR) in the presence of errors in the radiofrequency (RF) transmit chain. METHODS: The first step is the design of a pTx RF pulse with explicit constraints for global and local SAR. Then, the worst possible SAR associated with that pulse due to RF transmission errors ("worst-case SAR") is calculated. Finally, this information is used to re-calculate the pulse with lower SAR constraints, iterating this procedure until its worst-case SAR is within safety limits. RESULTS: Analysis of an actual pTx RF transmit chain revealed amplitude errors as high as 8% (20%) and phase errors above 3° (15°) for spokes (spiral) pulses. Simulations show that using the proposed framework, pulses can be designed with controlled "worst-case SAR" in the presence of errors of this magnitude at minor cost of the excitation profile quality. CONCLUSION: Our worst-case SAR-constrained pTx design strategy yields pulses with local and global SAR within the safety limits even in the presence of RF transmission errors. This strategy is a natural way to incorporate SAR safety factors in the design of pTx pulses. Magn Reson Med 75:2493-2504, 2016. © 2015 Wiley Periodicals, Inc.


Assuntos
Imageamento por Ressonância Magnética/métodos , Absorção de Radiação , Encéfalo/diagnóstico por imagem , Cabeça/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Modelos Biológicos
17.
Magn Reson Med ; 75(4): 1797-807, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25981161

RESUMO

PURPOSE: MRI-based skull segmentation is a useful procedure for many imaging applications. This study describes a methodology for automatic segmentation of the complete skull from a single T1-weighted volume. METHODS: The skull is estimated using a multi-atlas segmentation approach. Using a whole head computed tomography (CT) scan database, the skull in a new MRI volume is detected by nonrigid image registration of the volume to every CT, and combination of the individual segmentations by label-fusion. We have compared Majority Voting, Simultaneous Truth and Performance Level Estimation (STAPLE), Shape Based Averaging (SBA), and the Selective and Iterative Method for Performance Level Estimation (SIMPLE) algorithms. RESULTS: The pipeline has been evaluated quantitatively using images from the Retrospective Image Registration Evaluation database (reaching an overlap of 72.46 ± 6.99%), a clinical CT-MR dataset (maximum overlap of 78.31 ± 6.97%), and a whole head CT-MRI pair (maximum overlap 78.68%). A qualitative evaluation has also been performed on MRI acquisition of volunteers. CONCLUSION: It is possible to automatically segment the complete skull from MRI data using a multi-atlas and label fusion approach. This will allow the creation of complete MRI-based tissue models that can be used in electromagnetic dosimetry applications and attenuation correction in PET/MR.


Assuntos
Mapeamento Encefálico/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Crânio/anatomia & histologia , Crânio/diagnóstico por imagem , Adulto , Algoritmos , Encéfalo/anatomia & histologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encefalopatias/diagnóstico por imagem , Encefalopatias/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Interface Usuário-Computador , Adulto Jovem
18.
Magn Reson Med ; 73(4): 1533-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24753012

RESUMO

PURPOSE: Local specific absorption rate (SAR) limits many applications of parallel transmit (pTx) in ultra high-field imaging. In this Note, we introduce the use of an array element, which is intentionally inefficient at generating spin excitation (a "dark mode") to attempt a partial cancellation of the electric field from those elements that do generate excitation. We show that adding dipole elements oriented orthogonal to their conventional orientation to a linear array of conventional loop elements can lower the local SAR hotspot in a C-spine array at 7 T. METHODS: We model electromagnetic fields in a head/torso model to calculate SAR and excitation B1 (+) patterns generated by conventional loop arrays and loop arrays with added electric dipole elements. We utilize the dark modes that are generated by the intentional and inefficient orientation of dipole elements in order to reduce peak 10g local SAR while maintaining excitation fidelity. RESULTS: For B1 (+) shimming in the spine, the addition of dipole elements did not significantly alter the B1 (+) spatial pattern but reduced local SAR by 36%. CONCLUSION: The dipole elements provide a sufficiently complimentary B1 (+) and electric field pattern to the loop array that can be exploited by the radiofrequency shimming algorithm to reduce local SAR.


Assuntos
Artefatos , Aumento da Imagem/instrumentação , Imageamento por Ressonância Magnética/instrumentação , Magnetismo/instrumentação , Coluna Vertebral/anatomia & histologia , Transdutores , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
19.
Magn Reson Med ; 73(5): 1896-903, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-24947104

RESUMO

PURPOSE: Specific absorption rate (SAR) amplification around active implantable medical devices during diagnostic MRI procedures poses a potential risk for patient safety. In this study, we present a parallel transmit (pTx) strategy that can be used to safely scan patients with deep brain stimulation (DBS) implants. METHODS: We performed electromagnetic simulations at 3T using a uniform phantom and a multitissue realistic head model with a generic DBS implant. Our strategy is based on using implant-friendly modes, which are defined as the modes of an array that reduce the local SAR around the DBS lead tip. These modes are used in a spokes pulse design algorithm in order to produce highly uniform magnitude least-squares flip angle excitations. RESULTS: Local SAR (1 g) at the lead tip is reduced below 0.1 W/kg compared with 31.2 W/kg, which is obtained by a simple quadrature birdcage excitation without any sort of SAR mitigation. For the multitissue realistic head model, peak 10 g local SAR and global SAR are obtained as 4.52 W/kg and 0.48 W/kg, respectively. A uniform axial flip angle is also obtained (NRMSE <3%). CONCLUSION: Parallel transmit arrays can be used to generate implant-friendly modes and to reduce SAR around DBS implants while constraining peak local SAR and global SAR and maximizing flip angle homogeneity.


Assuntos
Estimulação Encefálica Profunda/instrumentação , Segurança de Equipamentos , Imageamento por Ressonância Magnética/métodos , Metais , Imagens de Fantasmas , Algoritmos , Contraindicações , Campos Eletromagnéticos , Humanos , Imageamento por Ressonância Magnética/instrumentação
20.
Med Phys ; 51(2): 1007-1018, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38153187

RESUMO

BACKGROUND: Heating around deep brain stimulation (DBS) in magnetic resonance imaging (MRI) occurs when the time-varying electromagnetic (EM) fields induce currents in the electrodes which can generate heat and potentially cause tissue damage. Predicting the heating around the electrode contacts is important to ensure the safety of patients with DBS implants undergoing an MRI scan. We previously proposed a workflow to predict heating around DBS contacts and introduced a parameter, equivalent transimpedance, that is independent of electrode trajectories, termination, and radiofrequency (RF) excitations. The workflow performance was validated in a unilateral DBS system. PURPOSE: To predict RF heating around the contacts of bilateral (DBS) electrodes during an MRI scan in an anthropomorphic head phantom. METHODS: Bilateral electrodes were fixed in a skull phantom filled with hydroxyethyl cellulose (HEC) gel. The electrode shafts were suspended extracranially, in a head and torso phantom filled with the same gel material. The current induced on the electrode shaft was experimentally measured using an MR-based technique 3 cm above the tip. A transimpedance value determined in a previous offline calibration was used to scale the shaft current and calculate the contact voltage. The voltage was assigned as a boundary condition on the electrical contacts of the electrode in a quasi-static (EM) simulation. The resulting specific absorption rate (SAR) distribution became the input for a transient thermal simulation and was used to predict the heating around the contacts. RF heating experiments were performed for eight different lead trajectories using circularly polarized (CP) excitation and two linear excitations for one trajectory. The measured temperatures for all experiments were compared with the simulated temperatures and the root-mean-squared errors (RMSE) were calculated. RESULTS: The RF heating around the contacts of both bilateral electrodes was predicted with ≤ 0.29°C of RMSE for 20 heating scenarios. CONCLUSION: The workflow successfully predicted the heating for different bilateral DBS trajectories and excitation patterns in an anthropomorphic head phantom.


Assuntos
Estimulação Encefálica Profunda , Calefação , Humanos , Estimulação Encefálica Profunda/métodos , Fluxo de Trabalho , Imageamento por Ressonância Magnética/efeitos adversos , Imageamento por Ressonância Magnética/métodos , Eletrodos , Ondas de Rádio , Imagens de Fantasmas , Eletrodos Implantados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA