Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
New Phytol ; 238(4): 1593-1604, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36764921

RESUMO

Functional analysis of large gene families in plant pathogens can be cumbersome using classical insertional mutagenesis. Additionally, Cas9 toxicity has limited the application of CRISPR-Cas9 for directed mutagenesis in bacteria. Here, we successfully applied a CRISPR interference strategy to investigate the cryptic role of the transcription activator-like effector (tale) multigene family in several plant-pathogenic Xanthomonas bacterial species, owing to their contribution to pathogen virulence. Single guide RNAs (sgRNAs) designed against Xanthomonas phaseoli pv manihotis tale conserved gene sequences efficiently silenced expression of all tales, with concomitant decrease in virulence and TALE-induced host gene expression. The system is readily translatable to other Xanthomonas species infecting rice, citrus, Brassica, and cassava, silencing up to 16 tales in a given strain using a single sgRNA. Complementation with plasmid-borne designer tales lacking the sgRNA-targeted sequence restored molecular and virulence phenotypes in all pathosystems. Our results evidenced that X. campestris pv campestris CN08 tales are relevant for symptom development in cauliflower. They also show that the MeSWEET10a sugar transporter is surprisingly targeted by the nonvascular cassava pathogen X. cassavae, highlighting a new example of TALE functional convergence between phylogenetically distant Xanthomonas. Overall, this novel technology provides a platform for discovery and rapid functional understanding of highly conserved gene families.


Assuntos
Oryza , Xanthomonas , Efetores Semelhantes a Ativadores de Transcrição/genética , Xanthomonas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Virulência/genética , Transporte Biológico , Doenças das Plantas/microbiologia , Oryza/genética
2.
BMC Genomics ; 16: 1098, 2015 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-26699528

RESUMO

BACKGROUND: The identification of factors involved in the host range definition and evolution is a pivotal challenge in the goal to predict and prevent the emergence of plant bacterial disease. To trace the evolution and find molecular differences between three pathotypes of Xanthomonas citri pv. citri that may explain their distinctive host ranges, 42 strains of X. citri pv. citri and one outgroup strain, Xanthomonas citri pv. bilvae were sequenced and compared. RESULTS: The strains from each pathotype form monophyletic clades, with a short branch shared by the A(w) and A pathotypes. Pathotype-specific recombination was detected in seven regions of the alignment. Using Ancestral Character Estimation, 426 SNPs were mapped to the four branches at the base of the A, A*, A(w) and A/A(w) clades. Several genes containing pathotype-specific nonsynonymous mutations have functions related to pathogenicity. The A pathotype is enriched for SNP-containing genes involved in defense mechanisms, while A* is significantly depleted for genes that are involved in transcription. The pathotypes differ by four gene islands that largely coincide with regions of recombination and include genes with a role in virulence. Both A* and A(w) are missing genes involved in defense mechanisms. In contrast to a recent study, we find that there are an extremely small number of pathotype-specific gene presences and absences. CONCLUSIONS: The three pathotypes of X. citri pv. citri that differ in their host ranges largely show genomic differences related to recombination, horizontal gene transfer and single nucleotide polymorphism. We detail the phylogenetic relationship of the pathotypes and provide a set of candidate genes involved in pathotype-specific evolutionary events that could explain to the differences in host range and pathogenicity between them.


Assuntos
Genoma de Planta , Análise de Sequência de DNA/métodos , Xanthomonas/classificação , Xanthomonas/genética , Evolução Molecular , Especificidade de Hospedeiro , Metagenômica/métodos , Filogenia , Polimorfismo de Nucleotídeo Único , Recombinação Genética
3.
J Microbiol Methods ; 114: 78-86, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25940928

RESUMO

Bacterial blight of onion is an emerging disease threatening world onion production. The causal agent Xanthomonas axonopodis pv. allii is seed transmitted and a reliable and sensitive tool is needed to monitor seed exchanges. A triplex quantitative real-time PCR assay was developed targeting two X. axonopodis pv. allii-specific markers and an internal control chosen in 5.8S rRNA gene from Alliaceae. Amplification of at least one marker indicates the presence of the bacterium in seed extracts. This real-time PCR assay detected all the 79 X. axonopodis pv. allii strains tested and excluded 85.2% of the 135 non-target strains and particularly all 39 saprophytic and pathogenic bacteria associated with onion. Cross-reactions were mainly obtained for strains assigned to nine phylogenetically related X. axonopodis pathovars. The cycle cut-off was estimated statistically at 36.3 considering a risk of false positive of 1%. The limit of detection obtained in at least 95% of the time (LOD 95%) was 5×10(3) CFU/g (colony forming unit/g). The sensitivity threshold was found to be 1 infected seed in 32,790 seeds. This real-time PCR assay should be useful for preventing the long-distance spread of X. axonopodis pv. allii via contaminated seed lots and determining the epidemiology of the bacterium.


Assuntos
Reação em Cadeia da Polimerase Multiplex/métodos , Cebolas/microbiologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Sementes/microbiologia , Xanthomonas axonopodis/isolamento & purificação , Reações Cruzadas , Reações Falso-Positivas , Sensibilidade e Especificidade , Xanthomonas axonopodis/genética
4.
Front Plant Sci ; 6: 545, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26284082

RESUMO

Transcription Activator-Like (TAL) effectors from Xanthomonas plant pathogenic bacteria can bind to the promoter region of plant genes and induce their expression. DNA-binding specificity is governed by a central domain made of nearly identical repeats, each determining the recognition of one base pair via two amino acid residues (a.k.a. Repeat Variable Di-residue, or RVD). Knowing how TAL effectors differ from each other within and between strains would be useful to infer functional and evolutionary relationships, but their repetitive nature precludes reliable use of traditional alignment methods. The suite QueTAL was therefore developed to offer tailored tools for comparison of TAL effector genes. The program DisTAL considers each repeat as a unit, transforms a TAL effector sequence into a sequence of coded repeats and makes pair-wise alignments between these coded sequences to construct trees. The program FuncTAL is aimed at finding TAL effectors with similar DNA-binding capabilities. It calculates correlations between position weight matrices of potential target DNA sequence predicted from the RVD sequence, and builds trees based on these correlations. The programs accurately represented phylogenetic and functional relationships between TAL effectors using either simulated or literature-curated data. When using the programs on a large set of TAL effector sequences, the DisTAL tree largely reflected the expected species phylogeny. In contrast, FuncTAL showed that TAL effectors with similar binding capabilities can be found between phylogenetically distant taxa. This suite will help users to rapidly analyse any TAL effector genes of interest and compare them to other available TAL genes and should improve our understanding of TAL effectors evolution. It is available at http://bioinfo-web.mpl.ird.fr/cgi-bin2/quetal/quetal.cgi.

5.
Mol Plant Pathol ; 14(5): 483-96, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23437976

RESUMO

The mechanisms determining the host range of Xanthomonas are still undeciphered, despite much interest in their potential roles in the evolution and emergence of plant pathogenic bacteria. Xanthomonas citri pv. citri (Xci) is an interesting model of host specialization because of its pathogenic variants: pathotype A strains infect a wide range of Rutaceous species, whereas pathotype A*/A(W) strains have a host range restricted to Mexican lime (Citrus aurantifolia) and alemow (Citrus macrophylla). Based on a collection of 55 strains representative of Xci worldwide diversity assessed by amplified fragment length polymorphism (AFLP), we investigated the distribution of type III effectors (T3Es) in relation to host range. We examined the presence of 66 T3Es from xanthomonads in Xci and identified a repertoire of 28 effectors, 26 of which were shared by all Xci strains, whereas two (xopAG and xopC1) were present only in some A*/A(W) strains. We found that xopAG (=avrGf1) was present in all A(W) strains, but also in three A* strains genetically distant from A(W) , and that all xopAG-containing strains induced the hypersensitive response (HR) on grapefruit and sweet orange. The analysis of xopAD and xopAG suggested horizontal transfer between X. citri pv. bilvae, another citrus pathogen, and some Xci strains. A strains were genetically less diverse, induced identical phenotypic responses and possessed indistinguishable T3E repertoires. Conversely, A*/A(W) strains exhibited a wider genetic diversity in which clades correlated with geographical origin and T3E repertoire, but not with pathogenicity, according to T3E deletion experiments. Our data outline the importance of taking into account the heterogeneity of Xci A*/A(W) strains when analysing the mechanisms of host specialization.


Assuntos
Sistemas de Secreção Bacterianos/genética , Especificidade de Hospedeiro/genética , Xanthomonas/classificação , Xanthomonas/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Proteínas de Bactérias/metabolismo , Análise por Conglomerados , Contagem de Colônia Microbiana , Deleção de Genes , Transferência Genética Horizontal/genética , Genes Bacterianos/genética , Variação Genética , Geografia , Interações Hospedeiro-Patógeno , Dados de Sequência Molecular , Fenótipo , Filogenia , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Folhas de Planta/microbiologia , Plantas/microbiologia , Análise de Sequência de DNA , Xanthomonas/crescimento & desenvolvimento , Xanthomonas/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA